

Ökologische Aussagekraft von Qualitätsstandards für Feinsedimente

_

Ecological relevance of quality standards for fine sediments

Marvin Brinke, Sebastian Höss, Evelyn Claus, Walter Traunspurger, Georg Reifferscheid and Peter Heininger

Sediment quality assessment / risk assessment

Sediment Quality Triad

 three major Lines of Evidence (LoE)

... to identify risk posed by contaminants

analysis -> guideline/threshold value

Contamination

(direct)
Toxicity

bioassays

Community alteration

in-situ assessment

Sediment quality assessment / risk assessment

- polluted sediments conflict with achieving good chemical and good ecological status of waterbodies (e.g. EU WFD, river basin management plans)
- however, multiple impact by several stressors

Cause-Effect-Relationship

- reason for failing good status?
- choice of appropriate actions?

Specific indices might help

- to characterize quality status
- to prioritize sites / actions
- to distinguish between stressors

Sediment quality assessment / risk assessment

Stressor

Chemical contamination

Subject of protection

Fine sediments

- hotspot for chemical contamination
- provide ecosystem functions, hence services
- specific fauna: more **meiobenthos** than macrobenthos

Meiobenthos

Assessment tools / indices based on meiofauna (nematodes)

analysis ->
nematode-based
Sediment Quality
Guidelines
Contamination

-> index can be calculated (toxic potential of sediment)

(direct)
Toxicity

sediment contact test
-> ISO 10872

Community alteration

in-situ assessment
-> NemaSPEAR[%]

-> pollution-sensitive ecological index

Sediment Quality Guidelines (SQGs)

SQGs – effect-based guidelines for sediment/dredged material assessment

Threshold effect concentration (TEC):

"Concentration below which adverse effects on benthic invertebrates are unlikely to be observed "

Probable effect concentration (PEC):

"Concentration above which harmful effects on benthic invertebrates are very likely to be observed "

also:

- SQ benchmarks
- SQ criteria
- SQ standards -> e.g. Environmental Quality Standard (EQS)
 (CIS-EU TGD No. 27 suggests using TECs)

Derivation nematode-based SQGs

- TECs and PECs for 44 substances and sum parameters
 - As, Cd, Cu, Pb, Cr, Hg, Ni, Zn
 - 16 single-PAH, and sum of 5, 6, and 16
 - 7 single-PCB, and sum of 7
 - non-polar HC, 3x HCH, 3x DDX, HCB, TBT-cation

- Screening level concentration approach (SLCA; see Persaud et al., 1993 or de Deckere et al., 2011)
 - samples: broad range of contamination and of regions/ river basins from Germany
 - co-occurrence derivation: "matching chemistry and effects"
 - nematode community analysis (350 species identified)
 - chemical analysis including physico-chemical parameters (e.g. TOC)

Indices can be calculated based on SQGs

for example:

```
mean PEC-Q = mean ([A]/PEC<sub>A</sub>; [B]/PEC<sub>B</sub>; ...; [Z]/PEC<sub>Z</sub>)
```

- consideration of contaminant mixture for classification and prioritization
 - not substance by substance (toxic potential of sediment)

mean PEC-Qs: nematodes vs. macroinvertebrates

Calculation of mean PEC-Quotient for site assessment

- site assessments with both indices correlate
- However,
 differences of
 specific mean PEC-Q
 value in indicating
 the toxic potential
 likely

de Deckere et al. (2011), J Soils Sediments 11:504-517

Predictive ability

- Predictive ability of the mean PEC-Q?
- Probability that toxicity actually occurs at a specific mean PEC-Q?
- Ecological relevance of the mean PEC-Q?

➤ Instead of bioassays, using the NemaSPEAR[%]-index as a toxicity indicator

NemaSPEAR[%]: a pollution-sensitive ecological index

1. Nematode SPEcies At Risk —> nematode species were classified into two groups:

NemaSPEAR = "sensitive species"

missing in sediments with higher contamination - NemaSPE_{not}AR = "tolerant species"

- occur in all sediments irrespective of contamination -

2. Calculation of the index for sediment quality assessment:

NemaSPEAR[%] =
$$100 \times \frac{\Sigma \log [\text{NemaSPEAR}]_{\text{relAb}}}{\Sigma \log [\text{All Species}]_{\text{relAb}}}$$

The index decreases if the proportion of pollutionsensitive species declines in a community

- Höss et al. (2011): Environ. Int. 37, 940–949.
- Höss et al. (2017): Ecol. Indic. 73, 52–60.

NemaSPEAR[%]: a pollution-sensitive ecological index

Index recently validated and updated: Höss et al. (2017): Ecol. Indic. 73, 52–60.

- Toxic Potential: mean PEC-Q based on SQGs from de Deckere et al. (2011): J. Soils Sediments 11, 504-517.

NemaSPEAR[%] vs. mean PEC-Quotient

Predictive ability

following MacDonald et al. (2000): Arch Environ Con Tox 39, 20-31

NemaSPEAR <30%:

- toxic effects likely
- likely "no good ecological status" achieved

NemaSPEAR <20%:

- more severe toxic effects likely
- likely "no moderate ecological status" achieved

Probability of toxicity!

Ecological relevance of SQGs?

- Using a pollution-sensitive ecological indicator to assess the predictive ability of Sediment Quality Guidelines (SQGs) for fine sediments underpins the ecotoxicological impact (toxic potential) and ecological relevance associated with the guidelines
- Pollution-sensitive ecological indices (e.g. NemaSPEAR[%]) and effect-based chemical indices (e.g. mean PEC-Q) help to identify potential impact of pollutants and thus also to distinguish between environmental stressors

Uncertainty in risk assessment for fine sediments

Every test system, every index, ... will be producing false-negative and false-positive results!

What are the reasons?

- other stressors (e.g. O₂-deficit, habitat structure) -> NemaSPEAR[%]
- increased or decreased bioavailability of contaminants -> mean PEC-Q

The aim should be to reduce uncertainty – can be done by

- improving the assessment tool
- using additional Lines of Evidence (Weight of Evidence)

Specifying the probability of toxicity that is associated with a sediment contamination instead of only determining the exceedance or not exceedance of fixed threshold values likely will be a straightforward approach to deal with uncertainty and to communicate uncertainty!

Thank you for your attention!

