První zpráva o plnění „Akčního plánu povodňové ochrany v povodí Labe“

v letech 2003 - 2005
První zpráva o plnění „Akčního plánu povodňové ochrany v povodí Labe“ v letech 2003 - 2005

Magdeburg

2006
Vydavatel:
Mezinárodní komise pro ochranu Labe (MKOL)
Internationale Kommission zum Schutz der Elbe (IKSE)
Postfach 1647/1648
D – 39006 Magdeburg

Tisk:
Druckerei Schlüter GmbH & Co. KG
Grundweg 77
D – 39218 Schönebeck (Elbe)

Náklad:
800 výtisků v českém jazyce
2 000 výtisků v německém jazyce

Titulní strana:
Labe u obce Apollensdorf pod městem Wittenberg/L. (ř. km 224) dne 29. května 1999 při průtoku 215 m³.s⁻¹ ve vodoměrné stanici Wittenberg/L. a pro srovnání za povodně 7. března 1999 při průtoku 1 900 m³.s⁻¹ (autor fotografii: M. Simon)
Předmět

<table>
<thead>
<tr>
<th>Obsah</th>
<th>Stránka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Předmět</td>
<td>3</td>
</tr>
<tr>
<td>Úvod</td>
<td>4</td>
</tr>
<tr>
<td>Opatření v povodí Labe</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Plnění zásad ke zvýšení retenčního účinku povodí</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Opatření v zemědělství</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2 Opatření v lesním hospodářství</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3 Opatření ve vodním hospodářství</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Plnění zásad vymezení, vyhlášení a využívání záplavových území</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Studie ke zjišťování povodňových rizik a škod</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Požadavky na technická zařízení s látkami ohrožujícími jakost vody v oblastech ohrožených povodněmi</td>
<td>22</td>
</tr>
<tr>
<td>2.5 Studie ke obnově bývalých záplavových ploch a vytvoření dalších retenčních prostor</td>
<td>23</td>
</tr>
<tr>
<td>2.6 Studie o vlivu velkých údolních nádrží na Vltavě, Ohři a Sále na průběh povodní na Labi</td>
<td>27</td>
</tr>
<tr>
<td>Prioritní opatření na Labi a na dolních úsecích přítoků</td>
<td>32</td>
</tr>
<tr>
<td>3.1 Realizace opatření technické povodňové ochrany v České republice</td>
<td>32</td>
</tr>
<tr>
<td>3.2 Realizace opatření technické povodňové ochrany v Německu</td>
<td>34</td>
</tr>
</tbody>
</table>
Zdokonalení informací o povodnících

4.1 Naplňování koncepce pro vybudování společného mezinárodního
předpovědního povodňového systému

4.2 Naplňování koncepce pro modernizaci technického vybavení
měřicích sítí a spojových cest

4.3 Realizace doporučení ke zlepšení povodňových zabezpečovacích
a záchranných prací a preventivní opatření ohrožených subjektů

4.4 Realizace doporučení ke zlepšení informovanosti veřejnosti
a ke zvýšení povědomí o nebezpečí povodní

5 Shrnutí

6 Závěry

Protože povodně jako následek meteorologických událostí jsou přirozeným jevem a součástí koloběhu vody v přírodě, musí efektivní preventivní a ochranné strategie usilovat především o snížení škod a posléze o zvýšení úrovni povodňové ochrany.

Význam této problematiky podtrhuje rozsah škod způsobených velkým počtem povodňových událostí v Evropě v posledním desetiletí. Protože se většina povodí větších toků nachází na území několika států, byl i na úrovni Evropské komise zpracován návrh směrnice Evropského parlamentu a Rady o vyhodnocování povodní a protipovodňových opatření, jejímž cílem je omezovat a řídit rizika spojená s povodněmi pro zdraví lidí, životní prostředí, infrastrukturu a majetek.

Povodním neteze zabránit, ale vhodnými opatřeními v ploše povodí i podél vodních toků a s podporou spolupůsobivých předpovědních a informačních systémů lze významně omezit jejich škodlivé dopady. Toto je také cílem a obsahem Akčního plánu povodňové ochrany v povodí Labe, který tvoří dobrý základ pro česko-německou spolupráci v oblasti povodňové ochrany. Proto bychom si přáli, aby jeho realizace úspěšně pokračovala i v následujících letech.
Ve střední Evropě se Labe délku svého toku 1 094 km od pramene v Krkonoších až k ústí do Severního moře u Cuxhavenu a plochou svého povodí 148 268 km² řadí za Dunaj (817 000 km²), Vislu (194 112 km²) a Rýn (183 800 km²) na čtvrté místo. Povodí Labe zasahuje na území čtyř států: převážná část se rozkládá v Německu (65,5 %) a České republice (33,7 %), velmi malá část v Rakousku (0,6 %) a Polsku (0,2 %). V povodí Labe žije 24,5 mil. obyvatel.
Z prvního výkladu je patrné, že povodní v povodí Labe jsou důležité pro celou oblast a jsou těžce ovlivňovány mezinárodními vodními toky. Z hlediska ústupu, akční plán povodňové ochrany v povodí Labe zahrnuje úseky Horního a Středního Labe a dolní úseky jeho hlavních přítoků (Vltavy, Ohře, Černého Halštrovu, Mulde, Sály a Havoly). Dolní Labe (slupový úsek Labe) není v Akčním plánu obsažen, protože zde jsou průtoky a vodní stavové vlivovány přímočasně, zato se na jeho území uskupování a odtok vodního proudu. V akcionářské době se patří k významným mezinárodním územím, které jsou ovlivňovány přeshraničními podmínkami. Akční plán povodňové ochrany v povodí Labe obsahuje komplexní soubor opatření, kterými jsou:

- opatření podporující přirozenou retenci vody na ploše povodí, ve vodních útvarech povrchových vod a údolních nivách,
- rozsáhlejší prevence v záplavových územích, jako je prevence v oblasti využívání pozemků, řízené výstavby, usměrňování chování lidí a rizik,
- technická povodňová ochrana, zabezpečená především ohraničováním hrázemi, uzavíracími objekty, zkapacitněním koryt vodních toků, retenčními a dolními nádržemi,
- opatření nestrukturálního charakteru, jako jsou hlášky a předpovědní povodňové systémy, povodňové prohlídky a činnosti prováděné podle povodňových plánů.

Opatření preventivní povodňové ochrany by měla napomáhat k dosažení dobrého ekologického stavu/potenciálu vodních toků v souladu s Rámcovou směrnicí ES pro vodní politiku, zejména vhodným využitím a zapojením údolních nív.

Spolková republika Německo

Ve sledovaném období byla hlavní pozornost věnována vytvoření politických, odborných a územně plánovacích základních podmínek pro zvýšení retenčního účinku povodí. Tento proces sice pokročil, ale nebyl dohodnutě ukončen. Kromě toho byla v Německu realizována celá řada konkrétních opatření ke zlepšení retenčního účinku povodí Labe. Tato opatření však nevedla k výraznému posunu procentálového podílu různých způsobů využívání území.

2.1.1 Opatření v zemědělství

Zásady „řádného hospodaření s půdou“ nebo „správné zemědělské praxe“ jsou stanoveny legislativně závaznými minimálními standardy, které jsou zakotveny jako normy v různých odborných předpisech zemědělské a environmentální legislativy (zejména zákon o ochraně půdy, vyhláška o ochraně půdy a starých ekologických zátěžích).

Opatření preventivní povodňové ochrany, která jsou důležitá pro hospodaření s půdou, jsou v Německu realizována především pomocí kooperativních nástrojů, tj. školení a konzultací, podporování výměny informací a zkušeností, investičních opatření, opatření podporujících získání dalších ploch a dobrovolné dohody.

Další opatření byla zavedena také ke zvýšení podílu ekologického zemědělství a k zamezení zhutňování půdy. Plocha ekologického zemědělství se pouze v letech 2003 až 2004 zvýšila o 9 % na 22 189 ha. Z celkové zemědělské užitkové plochy připadá 2,45 % na ekologické zemědělství.

Podle německého zákona o úpravě dalších povinností zemědělců v zemědělském půdním fondu je v dobrém zemědělském a ekologickém stavu ze dne 4. listopadu 2004, jaké požadavky musí dodržovat zemědělské podniky, které dostávají přímé dotace, aby nedocházelo k erozi půdy a aby byla zabezpečena ochrana a zachování orgánického složky půdní struktury. Například existuje závazný požadavek na minimální vegetační pokryv orné půdy. Vyhláška zde ukládá, že po sklizení plodin se do 15. února následujícího roku nesmí na 40 % orné půdy zorat nebo musí být zorané plochy do 1. prosince opět obdělány.

V Německu upravuje vyhláška o zásadách zachování zemědělského půdního fondu v dobrém zemědělském a ekologickém stavu ze dne 4. listopadu 2004, jaké požadavky musí dodržovat zemědělské podniky, které dostávají přímé dotace, aby nedocházelo k erozi půdy a aby byla zabezpečena ochrana a zachování orgánického složky půdní struktury. Například existuje závazný požadavek na minimální vegetační pokryv orné půdy. Vyhláška zde ukládá, že po sklizení plodin se do 15. února následujícího roku nesmí na 40 % orné půdy zorat nebo musí být zorané plochy do 1. prosince opět obdělány.

V Dolním Saku jsou mj. v ochranných pásmech zdrojů pitné vody (cca 10 % rozlohy Dolního Saska) nabízeny zde hospodařícím zemědělcům a lesníkům smlouvy na podporu rozšířeň plochy zalesňování orné půdy.

V Meklenbursku-Předním Pomořansku je podporováno extenzivní obhospodařování trvalých travních porostů. Na těchto plochách došlo ke zvýšení biodiverzity a pro-
vádí se zde pravidelná péče. Opatření vedou k podstatné lepší retenči vody v povodí a k rovnoměrnějšímu odtoku do vodních toků v průběhu roku. Například v okrese Ludwigslust v povodí Labe dosahovala v roce 2005 tato podporovaná plocha cca 9 240 ha.

2.1.2 Opatření v lesním hospodářství

Z hlediska retence vody a zmírnění eroze mají značný význam lesní porosty, přičemž ke klíčovým prvům preventivní povodňové ochrany patří úprava druhové skladby lesních porostů a zvyšování podílu lesních ploch.

V Sasku je třeba zvýšit podíl lesních porostů podle zemského plánu územního rozvoje z roku 2003 z 28 % na 30 %.

V této souvislosti proběhla nejdříve evaluace plánů rozšiřování lesů a potenciálu ploch vhodných k zalesnění za účelem lepšího zadržení vody v krajině.

Pilotní projekt „Lesní hospodářství a preventivní povodňová ochrana ve východním Krušnohoří podle zásad ochrany přírody“, na jehož financování se podílí i Německá nadace životního prostředí (Deutsche Bundesstiftung Umwelt - DBU), je zaměřen na oblasti významné z hlediska vzniku povodní v Sasku.

V prioritních oblastech probíhá průběžně na základě 10letých provozních plánů lesnických institucí intenzivní integrace opatření ke zlepšení preventivní povodňové ochrany v lesním hospodářství.

Spolková země Braniborsko zahájila v roce 2004 program na ochranu rašeliníště v lesích. V první etapě bylo provedeno na zemědělských lesních plochách opatření na úpravu lesa a vodohospodářské úpravy v povodí rašeliníště. V druhé etapě budou soukromci a obce jako vlastníci lesních pozemků motivováni k cílené úpravě lesa v povodí rašeliníště s cílem zvyšit tvorbou zásob průsakové vody pod lesem půdu, a tím snížit odtok povrchových vod v povodí.

Podle zemského lesního zákona Meklenbursko-Předního Pomořanska je třeba zajistit zachování a rozšířování lesů. Vlastníci lesních pozemků jsou ze zákona povinni zabezpečit trvalé udržitelné a řádné hospodaření v lesích. K holoseči nad dva hektary je nutno mít povolení a vykázané nebo prosvedené lesní porosty je třeba v průběhu tři let opět zalesnit, popř. doplnit. Přeměna na jiný uživatelský účel musí být kompenzována náhradním zalesněním. Intenzivně sledována je přeměna monokulturních ježičnatých lesů na smíšené lesy vysadbované vhodnými druhy listnatých stromů. Podle daných stanovštních a historických podmínek je těchto přeplánů lesy s čistě borovými porosty, které jsou v souvislosti s trvale udržitelným lesním hospodářstvím všemi částmi přeměňovány na smíšené lesy.

Na základě dobrovolného osobního závazku vlastníků lesů je převážná část lesů obhospodařována přirodní bilžkým a k půdu šetrným způsobem. Státní a zásadní také komunální a soukromí vlastníci lesa si nechali ohodnotit obhospodařování lesa podle obou systémů ekologické certifikace lesů – evropského PEFC (Pen European Forest Certificate) i světového FSC (Forest Stewardship Council). S tím jsou pro retenci vody spojeny výhodné úpravy, jako je např.

- nepoužívání těžké mechanizace v lesních porostech,
- žádné hluboké obdělávání půdy v lesních porostech,
- pokud možno zamezení holosečí,
- pokud možno nepoužívat žádné chemické prostředky na ochranu rostlin,
- snížení, příp. demontáž umělého odvodňování lesních porostů.

V souvislosti s mapováním funkčnosti lesa v roce 2005 v Meklenbursku-Předním Pomořansku byly v povodí Labe zdokumentovány níže uvedené lesní plochy se zvláštní ochrannou funkcí:

- 1 953 ha lesa v původně vymezených záplavových územích,
- 753 ha lesa v ostatních záplavových územích,
- 2 781 ha ochranného břehového lesa.

Těchto téměř 5 500 ha odpovídá 3 % lesních ploch.

V období od 1996 do roku 2004 bylo v povodí Labe zalesněno 1 000 ha plochy dosud využívané pro zemědělské účely.
2.1.3 Opatření ve vodním hospodářství

V souvislosti s tím, aby jezměna v oblastech s tendencí vzniku povodní docházelo ke stabilizaci, resp. zlepšení retenční schopnosti, zavedlo Sasko novelizovaným Saským vodním zákonem do vodní legislativy novou právní kategorii - „oblasti vzniku povodní“. V těchto oblastech musí být k zachování a ke zlepšení přirozeného průsahu vody a zadržování vody v krajině dodržovány další zásadní povinnosti a navíc prováděna preventivní kontrola ve smyslu udělení nezbytného povolení pro re- alizaci určitých záměrů. Narušení retence vody v krajině musí být kompenzováno vhodným způsobem a pokud možno v plném rozsahu.

Jako doprovodná opatření k preventivní povodňové ochraně zapracovaly německé spolkové země do svých zemských vodních zákonů ustanovení o přednostním decentralizovaném vsakování vodních srážek ze zpev- něných ploch.

Bezprostředně po povodni v srpnu 2002 byl v saských údolních nádržích zvětšen ovladatelný ochranný prostore o 26 mil. m³ na celkem 148 mil. m³. Po vytvoření nezbytných předpokladů (zejména přizpůsobení vodárenských zařízení) se ve stávajících údolních nádržích předpokládá další rozšíření ovladatelného ochranného prostoru o více než 8 mil. m³. Rozestavěna je nová retenční nádrž s ovladatelným ochranným prostorem cca 5 mil. m³ (Lauenstein na toku Müglitz/Mohelnice na toku Selke). Všechny suché nádrže jsou již zahájeny v konstrukci, zatímco retenční nádrž v Wippra (na toku Wipper), Straßberg a Meisdorf (obě na toku Selke) v příštích letech bude zahájena výstavba.

Kromě již existujících možností zadržování vody v důlních jezerech byly ve sledovaném období této zprávy vytvořeny předpošlapky k tomu, aby bylo možné v důlním jezeře Zwenkau využít vodního výplavu z oblasti vzniku povodní.

Podstatnou součástí různých koncepcí a plánů povodňové ochrany v Sasku-Anhaltsku je vytvoření takových nádrží, které by nejen zachovaly a zlepšily retenční schopnost vody, ale také kompenzovaly výrazné ztráty vody v zemských vodních zákoních. V oblasti vzniku povodní byly vytvořeny nové právní kategorie.

V roce 2003 byly provedeny podrobné průzkumné práce zaměřené na možné využívání důlních jezer Goitzsche a Rösa (jezero Seelhausener See) jako manipulova- telných odlehčovacích poldrů, resp. retenčních nádrží. Na závěr bylo konstatováno, že obě uvedené lokality jsou pro tyto účely nevhodné.

Od začátku roku 2002 poskytuje spolková země Braniborsko podporu na vodohospodářská opatření ke zvýšení povodňové ochrany v oblasti vzniku povodní. Velká část uměle vybudované sítě vodních toků Braniborska s přibližně 10 000 jezů a malých vzdouvacích objektu je zaměřena tak, aby na základě rekonstrukce a úpravy zemského podzemí bylo možno v průběhu roku lépe řídit vodní proudy v oblasti vzniku povodní.

Další projekty se zaměřují na to, aby na základě revitalizace toků, zvýšení průtoku vody, demontáže zatrubnění toků a reaktivace starých ramen došlo jednak ke zpomalování odtoku vody z krajiny, ale i na povodňovou ochranu v oblasti vzniku povodní. K tomu přistupuje rovněž revitalizace jezer, rybníků a ledovcových jezírek jako přirozených vodních nádrží.

K doprovodným opatřením patří výsadba vhodné zeleně, příp. jiný způsob strukturování.
Pokračování textu

V Severoněmecké nížině hraje významnou roli zadržování vody v rašeliništích.

Podíl rašelinišť na ploše území Meklenburska-Předního Pomořanska představuje 12,6 %, z toho se dvě třetiny využívají pro zemědělské účely. Již v roce 1995 schválil zemský parlament koncepci ochrany rašelinišť, podle které mají být uvedené plochy na základě dobrovolných dohod s vlastníky a uživateli (správci) znovu zamokřovány. V povodí Labe byly v rámci tohoto programu zrealizovány níže uvedené projekty:

Poldr Güritz	Demontáž odvodňovací čerpací stanice, zvýšení vodních stavů	95 ha
Poldr Kieve	Demontáž odvodňovací čerpací stanice, zvýšení vodních stavů	36 ha
Západní poldr Lewitz	Demontáž odvodňovací čerpací stanice, zvýšení vodních stavů	1 119 ha
Rašeliniště Tessiner Moor	Revitalizace	83 ha
Celkem		**1 333 ha**

Ve Šlesvicku-Holštýnsku je zamokřování rašelinišť subvencováno v rámci programu „Slatinná rašeliniště“.

Ve všech spolkových zemích ležících kolem Labe probíhá již příprava, popř. realizace opatření ve smyslu Rámcové směrnice EU pro vodní politiku, která jsou také příčinem ke zvýšení retenčního účinku v daném povodí.

2.2 Plnění zásad vymezení, vyhlášení a využívání záplavových území

Česká republika

Pro možnosti předcházet a snižovat škody způsobené povodněmi je třeba znát rozsah území, která mohou být při povodni ohrožena či zaplavena. Systém vymezení a stanovování záplavových území ukládá § 66, odst. 1 zákona č. 254/2001 Sb., o vodách a o změně některých zákonů (vodní zákon), ve znění pozdějších předpisů.

Správci vodních toků zpracovávají návrh dokumentace záplavového území. Rozsah dokumentace je dán vyhláškou Ministerstva životního prostředí č. 236/2002 Sb., o způsobu a rozsahu zpracovávání návrhu a stanovení záplavových území. Tyto podklady jsou dále předávány místně příslušnému vodoprávnímu úřadu ke stanovení záplavového území podél vodního toku.

Vodní zákon ukládá vodoprávním úřadům povinnost takto předložená záplavová území stanovit. Vodoprávní úřad může příslušnému správci vodního toku uložit povinnost zpracovat a předložit mu návrh záplavového území jím spravovaného vodního toku nebo jeho úseku, pokud tato povinnost vyplývá z plánů hlavních povodí nebo plánu oblastí povodí.

V rámci definice záplavového území je zaveden pojem „aktivní zóna záplavového území“ (vyhláška MŽP č. 236/2002 Sb.). Aktivní zónou záplavového území se rozumí území v zastavěných územích obcí a v územích určených k zástavbě podle územních plánů, jež při povodni odvádí rozhodující část celkového průtoku, a tak bezprostředně ohrožuje život, zdraví a majetek lidí.
V aktivní zóně záplavových území se nesmí umisťovat, povolovat ani provádět stavby s výjimkou vodních děl, jimiž se zlepšují otokové poměry, staveb pro jímání vod, provádění odpadních vod a dále nebezpečných staveb dopravní a technické infrastruktury a zřizování konstrukcí chmelnic. To vše za podmínky, že se bude minimalizovat vliv na povodňové průtoky.

Těžit nerosty a zeminu způsobem zhoršujícím odtok povrchových vod a provádět terénní úpravy zhoršující odtok povrchových vod, skladovat odpadatelný materiál, látky a předměty, zřizovat oplocení, živé ploty a jiné podobné překážky, zřizovat tábory, kempy a jiná dočasná ubytovací zařízení.

V současné době jsou záplavová území vymezena na celém úseku Labe a na dolních úsecích Vltavy a Ohře (zahrnutý v Akčním plánu povodňové ochrany v povodí Labe). V rámci celého povodí Labe (povodí Labe, Vltavy a Ohře) jsou k 31. 12. 2005 vymezena záplavová území podél téměř 60 % všech významných vodních toků a stanovená podél cca 50 % délky těchto toků.

Cílem správců vodních toků je do konce roku 2008 vyznačit záplavová území na všech významných vodních tocích (tzv. cca 70 – 75 % délky vodních toků).

Tabulka 2.2-1 neuvádí rozsah záplavových území v ha a neumožňuje srovnání s údajem v Akčním plánu. Postup stanovování záplavových území však postupuje v souladu s Akčním plánem. K 31. 12. 2005 jsou na celém území povodí Labe vymezena záplavová území podél téměř 60 % všech významných vodních toků.

Tabulka 2.2-1 neuvádí rozsah záplavových území v ha a neumožňuje srovnání s údajem v Akčním plánu. Postup stanovování záplavových území však postupuje v souladu s Akčním plánem. K 31. 12. 2005 jsou na celém území povodí Labe vymezena záplavová území podél téměř 60 % všech významných vodních toků.

Cílem správců vodních toků je do konce roku 2008 vyznačit záplavová území na všech významných vodních tocích (tzv. cca 70 – 75 % délky vodních toků).

Spolková republika Německo

Při vytváření optimalizovaných právních podkladů pro záplavová území a jejich stanovování bylo ve sledovaném období dosaženo podstatného pokroku.

Pro záplavová území, ve kterých se v případě záplavy počítá s velkým potenciálem škod, je zřejmá v urbanizovaných oblastech, končí lhůta již v roce 2010.

- 4 na základě vyhlášky,
- 306 přechodně, resp. pomocí zjednodušeného řízení,
- 6 na základě stávajících právních předpisů,
- 42 překrýváním záplavových území stanovených jednou podle stávajících právních předpisů, jednak přechodně, resp. pomocí zjednodušeného řízení.

Rovněž ve vodním zákoně Sasko-Anhaltska byly rozšířeny úpravy týkající se záplavových území. Od roku 1997 mají status uzákoněných záplavových území nejen území stanovená na základě vyhlášky, ale také území mezi břehovou čárou a hlavní ochrannou hrází nebo vysokým břehem, která slouží k odvádění nebo zadržování povodňových průtoků, a manipulovatelné odlehčovací poldry.

Na základě těchto právních předpisů bylo možné v pracovních mapách evidovat a zobrazovat přechodně zajištěná záplavová území, což by v budoucnosti umožnilo lepší vlastní prevenci a zamezilo zástavbě v oblastech ohrožených povodněmi. Tyto aspekty se promítly do změny vodního zákona v roce 2003.

Na základě těchto právních předpisů bylo možné v pracovních mapách evidovat a zobrazovat přechodně zajištěná záplavová území, která do té doby nebyla stanovena ani vyhláškou ani zákonem. Přechodné stanovení záplavových území je přínosem k tomu, aby byla přirozená záplavová území podchycena vcelku a pro veřejnost transparentně.

Předběžné zajištění záplavových území pomocí uvedených právních předpisů bylo možné v pracovních mapách evidovat a zobrazovat přechodně zajištěná záplavová území, která do té doby nebyla stanovena ani vyhláškou ani zákonem. Přechodné stanovení záplavových území je přínosem k tomu, aby byla přirozená záplavová území podchycena vcelku a pro veřejnost transparentně.

Pravidelných zajištění záplavových území pomocí uvedených právních předpisů bylo možné v pracovních mapách evidovat a zobrazovat přechodně zajištěná záplavová území, která do té doby nebyla stanovena ani vyhláškou ani zákonem. Přechodné stanovení záplavových území je přínosem k tomu, aby byla přirozená záplavová území podchycena vcelku a pro veřejnost transparentně.

V územním katastru Sasko-Anhaltska je v současnosti evidováno 141 306 ha záplavových území, z toho je

- 11 730 ha (8,3 %) stanoveno vyhláškou,
- 58 178 ha (41,2 %) stanoveno zákonem,
- 71 398 ha (50,5 %) přechodně zajištěno na základě pracovních map.

Rozloha záplavových území stanovených v povodí Labe v Braniborsku zahrnuje 38 839 ha.

K 31. prosinci 2004 jsou v Dolním Sasku stanovena nebo řešena záplavová území podél cca 5 750 km vodních toků. Z toho je pravomocně stanoveno území podél cca 3 650 km. Podél 1 100 km bylo záplavové území odborně vymezeno, ale dosud nedošlo k pravomocnému stanovení. Formální stanovení zajistí spolková země v roce 2006. Tímto krokem bude zajištěno záplavové území podél 4 750 km, což odpovídá přibližně 83 % dolnosaských vodních toků, které byly klasifikovány jako nebezpečné.

Oproti Zmapování stávající úrovně povodňové ochrany v povodí Labe (MKOL, 2001) nedošlo v Mecklenburgu-Předním Pomoransku ani ke změnám ani k doplnění. Na základě usnesení bývalého Krajského národního výboru Schwerin ze dne 2. prosince 1987 byla stanovena záplavová území na Labi a v oblastech se zpětným vztahem, která jsou nadále platná ustanoveními § 136 zemského vodního zákona. V Mecklenburgu-Předním
Pomořansku má 15 032 ha status stanoveného záplavového území.

V záplavovém území, které se skládá z přirozeného záplavového území až území v letních, resp. odlehčovacích poldrech, například nelze umisťovat ani upravovat stavby nebo stavební objekty, pokud neslouží ani povodňové ochrany ani plavbě, a rozorávat trvalé travní porosty.

2.3 Studie ke zjišťování povodňových rizik a škod

Zjišťování povodňových rizik a škod je aktuálním předmětem různých výzkumných úkolů. Nehledě k tomu probíhají v této oblasti v rámci MKOL rozsáhlé práce zaměřené na území podél Labe s potenciálním rizikem záplav a na přítoky zařazené do Zmapování stávající úrovně povodňové ochrany v povodí Labe ze dne 31. ledna 2001. Cílem studií je vyjádřit potenciál škod a rizika za povodne s dobou opakování 100 let nebo při návrhové povodni a v případě selhání objektů povodňové ochrany.

Ve sledovaném období zprávy byla v České republice a v Německu v tomto směru vyvinuta celá řada různorodých aktivit a k dispozici jsou významné mezinárodní výsledky. Celkový potenciál škod extrémní povodně bez zohlednění objektů povodňové ochrany dosud nelze definitivně vyčísлит.

Semináře
Mezinárodní komise pro ochranu Labe a Saský zemský úřad životního prostředí a geologie uspořádaly ve dnech 25. a 26. listopadu 2004 I. seminář o výše uvedených studiích, kterého se zúčastnilo 26 zástupců vodohospodářských orgánů z České republiky, německého Spolkového ministerstva životního prostředí, ochrany přírody a jaderné bezpečnosti, německých spolkových zemí Sasko, Sasko-Anhaltsko, Meklenbursko-Přední Pomořansko, Šlesvicko-Holštýnsko a sekretariátu MKOL.

Seminář sloužil k výměně informací o metodách a stavu práci na analýze a zobrazení povodňových rizik a škod.

Na základě zemské vyhlášky je ve Šlesvicku-Holštýnsku stanoveno v současnosti 6 záplavových území, která zčásti sahá až do oblasti Hamburku a která byla odsouhlasena mezi oběma spolkovými zeměmi. Z těchto záplavových území je 5 v povodí slavového úseku Labe. Tím, že Akční plán povodňové ochrany v povodí Labe podchytuje pouze Labe po Geesthacht, není pro předloženou zprávu relevantní žádné z uvedených území.

Ve 12 přednáškách byla pojednána tato témata:
- analýza povodně v srpnu 2002,
- náplň a metody zpracování koncepci povodňové ochrany, map povodňového nebezpečí a map rizik,
- metody ke zjišťení a zobrazení potenciálních škod a jejich verifikace.

Cíle popsaných tematických okruhů jsou v České republice a v zúčastněných německých spolkových zemích obdobné. V současnosti je hlavní pozornost věnována různým předmětům řešení. Zejména pořizování a validace vstupních dat a nakládání s nezřídka velmi rozsáhlými množstvími dat představují po metodické stránce velmi náročný úkol.

Příspěvky z České republiky zdokumentovaly vysokou úroveň podrobného zjišťování rizik a potenciálních škod. Mimo jiné bylo prezentováno hodnocení potenciálních škod a ztrátové křivky pro konkrétní objekt a v závislosti na intenzitě povodně. Diskutovány byly náročnost sběru dat a dosažitelná přesnost při prognóze potenciálních škod.

Práce, které byly prezentovány ze Šlesvicka-Holštýnska a Meklenburska-Předního Pomořanska, se rovněž zabývaly zjišťováním potenciálních škod. Hlavním předmětem průzkumných prací byly zde využívané ztrátové křivky (výška škod v závislosti na intenzitě záplavy) a majetkové charakteristiky ve vztahu k ploše. Analýza rizik byla zaměřena na získání informací o hodnotě očekávaných škod. Na základě těchto hodnot jsou odvozeny rizikové třídy vyzačené v mapách.
Spolkové země Sasko a Sasko-Anhaltsko prezentovaly práce zaměřené na zjišťování povodňového nebezpečí a na vypracování koncepcí povodňové ochrany v dílčích povodních. Zde byly řešeny různé případy povodně, aby byla podle nutné míry ochrany podporována diferenčovaná opatření plánování a preventivní ochrany před povodněmi. Plánování se potom opírá o variační řešení, zohledňující analýzu výnosů a nákladů a odborné aspekty vodního hospodářství a ochrany přírody. Kromě toho prezentovaly spolkové země Sasko a Sasko-Anhaltsko příslušné projekty a přístupy ke zpracování map povodňového nebezpečí.

Projekt ELLA
Preventivní ochrana před povodněmi není pouze úkolem vodního hospodářství, ale vyžaduje mezioborové a přeshraniční řešení povodňového rizika a nebezpečí. Proto může významnou měrou přispívat i územní plánování včetně příslušných nástrojů. Uvedený přístup je součástí evropské politiky územního rozvoje. Jako vý-
znamný přínos v oblasti preventivní povodňové ochrany v povodí Labe byl v rámci programu INTERREG III B vytvořen nadnárodní projekt ELLA (Elbe-Labe Preventivní opatření povodňové ochrany pomocí nadnárodních opatření územního plánování), který posíluje spolupráci jak orgánů územního plánování, tak i s příslušnými vodohospodářskými orgány v povodí Labe.

Projekt ELLA má tyto cíle:

- vyvinout a sjednat společné strategie územního plánování v zájmu preventivní povodňové ochrany v povodí Labe,
- zpřístupnit data a informace o potenciálních rizicích, potřebných opatřeních, účincích daných opatření, krocích k jejich realizaci (mapy povodňového nebezpečí, retenčních území, užívání území atd.),
- přezkoumat a zlepšit nástroje územního plánování v německých spolkových zemích a státech v povodí Labe,
- realizovat pilotní projekty: modelový vývoj vybraných regionálních plánů a plánů rozvoje prostřednictvím inovační integrace oblastí v zájmu povodňové ochrany (rizika, využívání území, urbanizace atd.).

Dalším hlavním tématem projektu je práce s veřejností, protože zapojení a pochopení veřejnosti má rozhodující význam pro realizaci opatření územního plánování a řešení střetů zájmů úživatelů. V souvislosti s projekttem se počítá s uskutečněním putovní výstavy a s konaním regionálních konferencí s osobami zodpovědnými v obcích a seminářů odborníků se zástupci regionálních a lokalních orgánů plánování.

Česká republika

Na českém území byl v rámci projektu výzkumu a vývoje zahájen projekt „Návrh metodiky stanovování povodňových rizik a škod v záplavovém území a její ověření v povodí Labe“ (evidován pod označením VaV/650/5/02) v říjnu 2002 a ukončen v prosinci 2005. Ze základních problémových okruhů jednotlivých etap práci je vhodné uvést: analýzu jevů souvisejících s výskytem povodí i jejich průběhem – průzkum a hodnocení metod klasifikace i kategorizace záplavových území; hodnocení metod dosud užívaných při zjišťování povodňového rizika a oceňování povodňových škod; návrh a ověření metod oceňování povodňových škod v České republice. Stranou pozornosti nezůstala ani kompletace podkladů pro řešení konkrétních problémů v zájmovém území v povodí Labe (inundační území hlavního toku Labe).

Významná pozornost byla věnována příležitosti populárnímu zjišťování potenciálních škod v povodí Labe, tj. výzkumu a objednávání povodňových map na území povodí Labe.

Dalším hlavním tématem projektu je práce s veřejností, protože zapojení a pochopení veřejnosti má rozhodující význam pro realizaci opatření územního plánování a řešení střetů zájmů úživatelů. V souvislosti s projekttem se počítá s uskutečněním putovní výstavy a s konaním regionálních konferencí s osobami zodpovědnými v obcích a seminářů odborníků se zástupci regionálních a lokalních orgánů plánování.

Nezbytné úzké sladění projektu s aktivitami v rámci MKOL probíhá na základě průběžné vzájemné výměny informací a konzultací.
Cílem praktické části projektu bylo ukázat potenciál škod a rizika za povodně s dobou opakování 100 let (obr. 2.3-2 a 2.3-3) nebo při návrhové povodni a v případě selhání objektů povodňové ochrany.

Využitelnost projektu v rámci strategických, legislativních, ekonomických, normativních, správních a kompetenčních nástrojů České republiky bude samo zřejmě záviset na celé řadě okolností. Je však evidentní, že klíčovou roli budou v daných podmínkách hrát kvalitní metodika a jednoduchost celého procesu vyhodnocování povodňového nebezpečí, zranitelnosti území, povodňových rizik i povodňových škod.

Tím, že občanům a dalším subjektům v ohrožených územích budou poskytnuty věrohodné informace o míře povodňového nebezpečí a vyplývajícího rizika, dosáhne se odpovědnějšího postoje ke všem aktivitám v ohroženém území. Zároveň se výrazně zmírní vliv generáčního zapomenání, přitom je zřejmé, že pohotové předávání aktuálních informací o míře nebezpečí znamená nejlevnější způsob povodňové prevence.
16

Litoměřice

Obr. 2.3-3: Mapa rizika s údaji o zranitelnosti záplavového území v pilotní oblasti Litoměřicko pro rozliv Q_{100} (stoletý průtok)
(zdroj: VÚV - VaV/650/5/02)

Spolková republika Německo

Pro Labe a významné přítoky v Sasku bylo zpracováno 45 koncepcí povodňové ochrany (spolu s povodím Odry celkem 47). Koncepce obsahují mapy povodňového nebezpečí, které zobrazují rizika pro všechna osidlení ohrožená záplavami, a to pro 20-, 50-, 100- a 200-, resp. 300-letý průtok. Celkem 545 map povodňového nebezpečí připravených v měřítku 1 : 5 000 tudíž umožňuje získání velmi detailních informací. V současnosti jsou mapy pro tok Labe k dispozici v měřítku 1 : 50 000. Mapy v detailnějším měřítku budou pro tuto oblast následovat v roce 2006 na bázi nově vytvořené mapa povodňového rizika je třeba v obcích veřejně představit. Tyto mapy jsou každému k dispozici k nahlédnutí a k informování v obcích, okresních úřadech a statutárních městech. Navíc jsou podkladem pro plánování staveb, stanovování záplavových území a pro zásahy povodňových komisi. Obce mohou mapy využívat pro účely komunálních map povodňových informací tím, že zanáší je další konkrétní údaje o významných zranitelných objektech, evakuačních cestách a lokalitách objektů významných z hlediska povodňových zabezpečovacích a záchraných prací.

Kromě map povodňového nebezpečí pro sídla (obr. 2.3-4) byl pro saské území zpracován atlas 36 map rizik pro případ extrémní povodně. Zde jsou v měřítku 1 : 100 000 plošně vyznačena povodňová rizika na významných vodních tocích a na Labi. Mapy se skládají z map rozlivu a z map potencionálních škod (obr. 2.3-5 a 2.3-6). Mapy rozlivu zobrazují oblasti ohrožené záplavami, což znamená, že rozliv byl vypočítán bez zohlednění vlivu stávajících objektů povodňové ochrany, jako jsou přehrady, ochranné hráze nebo manipulovatelné odlehlé poldry. Dále je povodňová intenzita vyjádřena pomocí hloubky vody a specifického průtoku. Navíc jsou ve speciální mapě vyznačeny potenciální
Legenda
- osa toku a staničení
- rozdíl pro $Q_{\text{extrém}}$ ($Q_{\text{extrém}} = 2 \times Q_{100}$)
- hranice řešeného úseku
- most
- trubní propust

Riziko záplavy
- vysoké $h_w \geq 2,0$ m nebo $v \cdot h_w \geq 2,0$ m²/s
- střední $2,0$ m > $h_w > 0,5$ m nebo $2,0$ m²/s > $v \cdot h_w > 0,5$ m²/s
- nízké $h_w \leq 0,5$m nebo $v \cdot h_w \leq 0,5$ m²/s
- h_w: hloubka vody
- $v \cdot h_w$: specifický průtok

Obr. 2.3-4: Mapa s vyznačením povodňového nebezpečí pro oblast okolí města Riesa, tok Jahna při Q_{100} (zdroj: SMUL)
škody. Tyto údaje, které jsou specifické pro dané území, byly zjištěny pro osídlení a průmysl ve třech různých třídách škod formou kapitalizované hodnoty na základě statistických údajů a následně zaneseny do mapy. Zvlášť zvýrazněny jsou objekty se specifickým rizikem, jako jsou nemocnice, transformační stanice, objekty vodáren a kanalizace. Mapy rizik jsou dostupné na internetu (http://www.umwelt.sachsen.de/de/wu/umwelt/lfug/lfug-internet/interaktive_karten_10950.html). Na interne-

tových stránkách Zemského úřadu životního prostředí a geologie (LfUG) jsou nad rámec extrémních povodní prezentovány rozlivy pro 20- a 100-letý průtok.

Ve spolupráci se Saskem byly v rámci projektu ELLA programu INTERREG III B zpracovány mapy rizik „Záplavy na Labi“ (obr. 2.3-7) i v Sasku-Anhaltsku. Přitom byl pro přípravu map rizik uplatněn obdobný postup jako na saském úseku Labe.
Obr. 2.3-7: Výřez z mapy rizik „Záplavy na Labi“ (zdroj: MLU Sasko-Anhaltsko)
Na základě map rizik bude v rámci prací na generálním povodňovém plánu Labe, který by mohl být k dispozici ve 4. čtvrtletí 2006, zjišťováno riziko potenciálních škod v oblastech ohrožených povodní.

Podobným postupem jako na Labi byly v roce 2005 zpracovány mapy rizik „Záplavy na toku Mulde“.

Navíc byly pro Mulde zjištěny potenciální škody a pro 6 úseků bylo násilováno protření ochranných hradí. V případě extrémní povodně je rozlivem na toku Mulde v Saska-Anhaltu ohroženo území 27 270 ha. Potenciální škody byly vyčleněny na 2 524 mil. EUR.

Výpočet potenciálních škod je založen na informacích o využívání území, charakteristikách věcného majetku a ztrátových křivkách vyjadřujících závislost mezi hloubkou vody a mírou poškození.

Pro výpočet byla data o využívání území shrnuta do různých kategorií. Každé z těchto kategorií byly přiřazeny majetkové charakteristiky (rozlišeno podle nemovitostí a movitostí, u osídlení navíc pro osobní automobily).

Mapy rizik a zobrazení potenciálních škod jsou významným moduljem ucelené prevence před povodněmi a podkladem pro rozhodování o nezbytných opatřeních povodňové ochrany.

V současnosti zpracovává Dolní Sasko pro svůj úsek na Labi od Schnackenburgu (ř. km 472,6) po jez Geesthacht (ř. km 585,9) povodňový plán, který bude vyhovovat doporučení Pracovního společenství spolkových zemí pro vodu (LAWA) z listopadu 1999. Mj. bude obsahovat i mapy rizik pro území, která jsou ve správě tzv. hradivých svazů. S dokončením povodňového plánu se počítá v nejbližší době.

Povodňová rizika a povodňové škody v Meklenbursku-Předním Pomořansku byly zjišťovány v roce 2001 v souladu s požadavky Akčního plánu povodňové ochrany v povodí Labe.

Výsledky jsou k dispozici formou tabulek a map a budou podkladem při rozhodování přítulšných správních orgánů o alternativách při dalším plánování územního rozvoje a zástavby v územích ohrožených povodněmi, dále budou zohledňovány při preventivní povodňové ochraně, při plánování civilní ochrany a při zabezpečovacích a záchranných pracích během povodní a přispějí k zvýšení povědomí občanů o riziku.

V rámci řešení projektu zaměřeného na vymezení záplavových území byla pro Šlesvicko-Holštýnsko vypracována jednorozměrná model Labe umožnil hodnocení a analýzu hydrologického režimu Labe za předpokladu stacionárních odtokových podmínek. V případě návrhové povodně na Labi (bez ledových jevů), která by odpovídala období opakovaného sto let, by mohlo být v Meklenbursku-Předním Pomořansku postiženo území o rozloze 25 132 ha.

Na základě digitálního modelu reliéfu a průběhu maximálních hladin směrodatné povodně (bez ledových jevů) byly pro hoření území vypočítány hloubky hloubky vody. V závislosti na hloubce vody, která může v ploše činit až 4 m, byla zjištěna procentuální míra poškození a odvozena škodní funkce uvažovaných složek majetku.

V případě extrémní povodně činí potenciální škody bez zohlednění objektů povodňové ochrany, resp. při jejich kompletním selhání cca 350 mil. EUR, z toho případá na obytné budovy 49,3 % a na zemědělské a lesnické objekty 12,6 %.
na metodiku k zobrazení rizika škod. Riziková analýza přitom probíhá v níže uvedených etapách:

- stanovení návrhových povodí a cíle ochrany,
- vyznačení rozlivů v mapě rizik,
- zjištění potenciálních škod,
- zjištění ročně očekávaných škod,
- vyznačení v mapě rizika škod.

Zjištění potenciálních škod se rozlišuje pro

- sídla, průmysl/podnikání a dopravní plochy,
- věcný majetek určený k bydlení,
- zemědělství.

Ve Šlesvicku-Holštýnsku vychází potenciál škod z níže uvedených specifických majetkových charakteristik: pro způsob využívání bydlení 234 EUR/m², pro průmysl a podnikání 289 EUR/m², pro dopravní plochy 54 EUR/m², pro ornou půdu 856 EUR/ha, pro louky a pastviny 230 EUR/ha a pro lesy 40,50 EUR/ha.

Uvedená metodika umožňuje obecné a ucelené stanovení a vizualizaci povodňového rizika v mapách rizika škod (obr. 2.3-8) v předem vymezených rozlivech ve Šlesvicku-Holštýnsku. Pro Labe nad jezem Geesthacht dosud nejsou výsledky k dispozici.

Také hanzovní město Hamburk zdokumentovalo škody
pro větší bouřlivé přílivy z minulosti, a proto má k discrezi detailní poznatky o povodňových rizicích. Tyto přehledy jsou průběžně aktualizovány. O výši případných povodňových škod existují pouze hrubé odhady.

Na základě zákona o zdokonalení preventivní ochrany před povodněmi se uvažuje o přesnější analýze a zobrazení povodňových rizik a výšky pravděpodobných povodňových škod pro povodí s plochou nad 10 km². U těchto analýz budou aplikovány matematické srážkodočkové modely, které jsou v současnosti vytvořeny pro 4 povodí. Uvedené modely budou podkladem pro analýzu povodňových rizik a zjišťování území zranitelných rozletem.

2.4 Požadavky na technická zařízení s látkami ohrožujícími jakost vody v oblastech ohrožených povodněmi

MKOL schválila již na svém 11. zasedání v roce 1998 „Požadavky na zařízení pro nakládání s látkami ohrožujícími jakost vody v oblastech ohrožených povodněmi nebo vzdutím“, které platí i pro technická zařízení odpadních vod a další zařízení infrastruktury s vysokým rizikovým potenciálem. Tato doporučení byla aktualizována na základě zkušeností z povodně na Labi v srpnu 2002 a jsou dostupná na internetových stránkách MKOL.

Technická zařízení pro manipulaci s látkami ohrožujícími jakost vody musí být nainstalována, umístěna a provozována tak, aby vlivem povodně nemohlo dojít k jejich uvolnění, jinému poškození nebo k úniku těchto látek. Technická zařízení je třeba zajistit tak, aby v případě povodně, která může způsobit kompletní zatopení skladovacích nádrží, bylo účinně zabráno uvolnění, poškození nebo změně polohy nádrží a potrubí. Pomocí vhodných opatření musí být vyloučena možnost mechanického poškození následkem vnějšího tlaku vody, splaveného materiálu, eroze nebo jiných vlivů. Zejména je zapotřebí zajistit 1,3násobnou bezpečnost proti prázdným nádržím a doložit, že prážní nádrže jsou z hlediska statiky navrhovány tak, aby byly schopny odolávat vnějšímu tlaku vody i při úplném zatopení. Voda se nesmí dostat do odvzdušňovacích otvorů nebo části zařízení, které obsahují látky ohrožující jakost vody.

Další aktivity MKOL v oblasti ochrany před havarijním znečištěním vody

MKOL pokračovala i v letech 2003 – 2005 v řešení otázek havarijní prevence a bezpečnosti technických zařízení a na svém 17. zasedání ve dnech 18.-19. října 2004 v Lipsku schválila „Doporučení pro zařízení sloužící ke skladování závadních látek“.

V roce 2004 byly ukončeny práce na vývoji Poplachového modelu Labe pro prognózu šíření vln škodlivých látek v Labi. Model umožňuje v případě havarijního znečištění vod odhadnout období doby dobytoku, trvání a maximální koncentrace tóxických látek v profilích na Labi pod místem havárie. S využitím internetu mohou být výpočty prováděny na základě aktuálních průtokových dat. Údržbu a další vývoj Poplachového modelu Labí zajišťuje Spolkový ústav hydrologický (BfG), Povodí Labe, s. a., a Výzkumný ústav vodohospodářský TGM.

Na 17. zasedání MKOL v roce 2004 byla schválena novela Mezinárodního varovného a poplachového plánu Labe, systému pro předávání informací o případech havarijního znečištění vod v povodí Labí. Jedná se o druhou novelizaci plánu, který MKOL zpracovala již v roce 1991. Novela byla vydána jako publikace MKOL a je dostupná i na internetových stránkách MKOL.

Novela obsahuje tyto hlavní změny a doplňky:

- V systému pro předávání hlášení o případech havarijního znečištění vod v povodí Labe došlo v České republice k převedení mezinárodní hlavní varovné centrály na dispečink Povodí Labe, s. p., v Hradci Králové.
- Do Mezinárodního varovného a poplachového plánu Labe byl zařazen Poplachový model Labe a připojeny zásady jeho použití. Dále byly stanoveny instituce zodpovědné za jeho použití v případě závažného havarijního znečištění vod.
- Byla ustanovena povinnost pravidelného testování Mezinárodního varovného a poplachového plánu Labe.

Pro oblasti ohrožené povodněmi připravuje MKOL vypracováni přehledu technických zařízení s látkami ohrožujícimi jakost vody a starých zátěží.

2.5 Studie k obnově bývalých záplavových ploch a vytvoření dalších retenčních prostor

Společné výzkumné centrum (Joint Research Centre - JRC) Evropské komise v Isprě (Itálie) řeší pro německou část povodí Labe Studii o obnově bývalých záplavových ploch a vytvoření dalších retenčních prostor podél Labe.

Cílem studie je určit potenciální lokality pro výstavbu manipulovatelných odlehčovacích poldrů na Labi a odhadnout jejich vliv na snížení kulminačního vodního stavu, časovou prodlevu kulminace a prodloužení povodňové vlny. Pro všechny vybrané lokality mají být pro případ extrémní povodně zjištěny jak lokální klady a zápory, tak i dopady po proudu Labe.

K řešení zadání shromažďovalo JRC od začátku roku 2003 od německých spolkových zemí historická a počáteční meteorologická data (např. úhrny srážek, teploty), hydrologická data (např. reprezentativní data z vodoměrných stanic, historické průtoky a vodní stavby), specifická říční data (např. geometrie vodního toku), data o údolních nádržích a manipulovatelných odlehčovacích poldrech (např. objemy, plochy, manipulační pravidla) a data o plánovaném oddálení ochranných hrází od toku. Poslední data přijalo JRC v dubnu 2005. U nutných modelových dat, která nemohly německé spolkové země poskytnout, přijalo JRC po dohodě s pracovní skupinou Povodňová ochrana MKOL zjednodušující předpoklady.

Pro některé z regionů mohly spolkové země dodatečně poskytnout data digitálních reliéfu modelů s vysokým rozlišením (obr. 2.5-1), které obsahují prostorové charakteristiky záplavových území, manipulovatelných odlehčovacích poldrů nebo koryta toku. Například Sasko-Anhaltsko předalo bodová data leteckého laserového snímkování Labe s rozlišením 0,50 m a digitální model reliéfu ATKIS v rastru 10 m.

Obr. 2.5-1: Příklad zobrazení digitálního modelu reliéfu s vysokým rozlišením využívaného modelem LISFLOOD (zdroj: JRC Ispra, LHW Sasko-Anhaltsko)
Podařilo se dokončit zpracování a konverzi poskytnutých dat k využívání v modelu LISFLOOD, který slouží k simulaci povodňových případů.

V roce 2005 provedlo JRC navíc další zdokonalení modelu LISFLOOD – jako např. lepší a detailnější zapojení dat příčných profilů s cílem umožnit přesnější výpočty šíření vln a úpravy pro složku podzemních vod.

V návaznosti na kalibraci modelu budou vypočítány scenérie pro Labe. V rámci pracovní skupiny Povodňová ochrana MKOL byly s JRC diskutovány možné scenérie a bylo sestaveno 97 vhodných scenérií. Scenérie obsahují variantní řešení technických opatření, jako je výstavba odlehčovacích poldrů podél Labe nebo oddálení ochranných hrází od toku, a různých možností provozu nádrží na Sále. Výpočty jsou prováděny většinou na základě současného a v budoucnosti předpokládaného stavu.

Protože předávání a zpracovávání dat bylo podstatně náročnější, než se původně předpokládalo, počítá se s tím, že v souvislosti s řešením studie mohou být výpočty scenérií dokončeny až koncem roku 2006.

Soudobě s uvedenými studiemi byly v jednotlivých spolkových zemích v rámci vyhodnocování povodně v létě 2002 a zpracovávání koncepce povodňové ochrany získány nové poznatky k oddálení ochranných hrází od toku a o lokalitách, kde lze zřídit manipulovatelné odlehčovací poldry.

Celkem se v Sasku jedná o 11 lokalit s teoretickou možností zřízení manipulovatelných odlehčovacích poldrů, ve kterých byly provedeny první podrobnější průzkumné práce. Na základě výsledků bylo doporučeno, že další průzkumy by měly být zaměřeny na:

- využívání lokalit u obcí Dautzschen a Aussig jako manipulovatelných odlehčovacích poldrů,
- využívání poldrů u obce Dommitzsch na toku Weinske, který by měl být chráněn proti zpětnému vzdutí pomocí uzavíracího jezu,
- a ve všech dalších lokalitách na oddálení ochranné hráze od roku.

Lokalita Döhlen/Neublessern byla spojena s lokalitou Dautzschen. Na základě výsledků prací se již neuvážuje o zřízení manipulovatelných odlehčovacích poldrů v lokalitách Trebnitz-Lößnig, Ammelgosswitz-Liebersee, Döbeltitz, Dommitzsch sever, Kölnitzsch, Kamitz a Zwethau.

Po dokončení základních průzkumů 7 lokalit pro zřízení manipulovatelných odlehčovacích poldrů na Labi v okresech Wittenberg a Anhalt-Zerbst se nyní detailní projekční práce v Sasku-Anhaltsku soustředějí na území kolem obcí Axien-Mauken v okrese Wittenberg. Na základě poznatků z přípravné studie se dává přednost variantě, která se skládá ze dvou dlíčích poldrů o celkové rozloze cca 1 700 ha.

Tím by mohl manipulovatelný odlehčovací poldr zadržet maximálně cca 44,3 mil. m³ vody. Podle prvních odhadů může poldr sloužit ke snížení kulminační hladiny v rozmezí asi 20-30 cm, což se může v závislosti na průtoku promítat až do regionu Dessau. Jeho efekt se může projevovat dále po toku Labe, přičemž se ale redukuje s rostoucí vzdáleností od zásahu a během kulminace závisí na souběhu s odtokem z Mulde a především ze Sály.

Začátkem roku 2005 bylo na Labi dokončeno oddálení ochranné hráze v oblasti Oberluch u Roßlau, čímž bylo obnoveno retenční území o ploše 135 ha.

Vzhledem ke své poloze mají locality Schartau-Blumenthal a Schönhausen-Schönfeld pro průběh povodní na Labi menší význam, a proto v současnosti nejsou dále řešeny.

Rovněž práce na Labi v lokalitách Glindenberg a ústí Ohre byly vypuštěny z plánu opatření, protože jsou v rozporu s ekonomickými hledisky a za povodně se dá na toku Ohre očekávat zhoršování situace v důsledku dodatečně zvýšených vodních stavů v úseku ovlivňovaném zpětným vzdutím.

Nad rámec dosud dokumentovaných lokalit byly do plánu opatření od oddálení ochranných hrází od toku zařazeny locality Hemsendorf a Hohenwarthe. Zde představuje oddálení hráze nejekonomičtější variantu nezbytně nutné rekonstrukce ochranné hráze. Nejrozšířenější akce, která povede k oddálení trasy ochranné hráze od Labe a k vytvoření retenčního území o ploše 600 ha, by měla být zrealizována v lokalitě Lödderitzer Forst. V současnosti probíhají přípravné práce.
Oddělením ochranné hráze od toku u poldru Niendorf-Teschenbrügge v Meklenbursku-Předním Pomořansku bylo obnoveno 6 ha záplavového území v oblasti zpětného vzduší Labe do přítoku Sude.

V manipulovatelném odlehčovacím poldru Blücher o rozloze 320 ha na toku Sude bude obnoven přirozený záplavový režim. Návrhové podklady jsou k dispozici, ovšem územní rozhodnutí zatím nenabylo právní moci z důvodu probíhajících obžalovacích řízení, a proto je realizace v současnosti otevřenou záležitostí.

Bylo zahájeno územní řízení pro projekt na ochranné hrázi Labe u obce Mahnkenwerder, kde má být obnoveno 22,5 ha přirozeného zaplavovaného území na Labi a na přítoku Sude 18,5 ha.

Dále probíhá řízení řízení ke zrušení práva veřejného užívání letního odlehčovacího poldru Glambeck, čímž by bylo na Labi obnoveno záplavové území o rozloze 45 ha.

Řízené zatápění Havolské nížiny, které bylo za povodně v roce 2002 poprvé využito, vedlo k výraznému snížení kulminace povodňové vlny na Labi. Touto akcí byl zmírněn tlak na ochranné hráze podél Labe v okresech Stendal a Prignitz a na dolním toku i v Dolním Sasku a v Meklenbursku-Předním Pomořansku.
První zpráva o plnění Akčního plánu povodňové ochrany v povodí Labe

Země Sasko-Anhaltsko a Braniborsko se shodují v tom, že využívání Havolské nížiny bude umožněno za extrémních povodní i do budoucna. Tomuto úkolu se přikládá zvláštní význam, protože nelze vyloučit klimatické změny a vydatné srážky se vyskytují čím dál častěji.

Proto se 26. listopadu 2002 spolkové země dohodly na tom, že zadají ve dvoustupňovém znaleckém posudku najdříve zpracování hydraulicko-hydrologického vyhodnocení povodně v roce 2002, aby následně bylo možno navrhnout optimalizační opatření ke zlepšení a rozšíření ochrany z hlediska hydrauliky/hydrologie, hydrotechniky a ekologie.

Tab. 2.5-1: Lokality s možností oddálení ochranné hráze na toku Labe v Německu

<table>
<thead>
<tr>
<th>Spolková země</th>
<th>Lokalita (f. km Labe)</th>
<th>Retenční území [ha]</th>
<th>Poznámka/stav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sasko</td>
<td>mezi obcemi Dröschka u Anmelgosswitz (131 – 138, veľo)</td>
<td>410</td>
<td>doporučení koncepce povodňové ochrany</td>
</tr>
<tr>
<td></td>
<td>Köllitsch (142 – 145, vpravo)</td>
<td>60</td>
<td>doporučení koncepce povodňové ochrany</td>
</tr>
<tr>
<td></td>
<td>mezi obcemi Döbelitz a Kranichau (rozšířená varianta podle Zemského úřadu životního prostředí a geologie) (142 – 146, vlevo)</td>
<td>376</td>
<td>doporučení koncepce povodňové ochrany</td>
</tr>
<tr>
<td></td>
<td>mezi obcemi Pütversenda a Kamitz (145, vlevo)</td>
<td>57</td>
<td>doporučení koncepce povodňové ochrany</td>
</tr>
<tr>
<td></td>
<td>mezi obcemi Weßling a Schillmühlenhaus (147,5 – 148,5, vlevo)</td>
<td>25</td>
<td>doporučení koncepce povodňové ochrany</td>
</tr>
<tr>
<td></td>
<td>severně od obce Pütversenda (149, vpravo)</td>
<td>8</td>
<td>doporučení koncepce povodňové ochrany</td>
</tr>
<tr>
<td></td>
<td>mezi obcemi Lünette Zwethau a Zwethau (156 – 158, vpravo)</td>
<td>116</td>
<td>doporučení koncepce povodňové ochrany</td>
</tr>
<tr>
<td></td>
<td>Pöbitz (168 – 171, vlevo)</td>
<td>104</td>
<td>doporučení koncepce povodňové ochrany</td>
</tr>
<tr>
<td></td>
<td>mezi obcemi Grenzbach a Proschwitz (173 – 176,5, vlevo)</td>
<td>88</td>
<td>doporučení koncepce povodňové ochrany</td>
</tr>
<tr>
<td>Sasko-Anhaltsko</td>
<td>Sachau-Priesitz (180 – 183)</td>
<td>210</td>
<td>studie</td>
</tr>
<tr>
<td></td>
<td>Herrmosendorf (198)</td>
<td>390</td>
<td>příprava dokumentace pro povolovací řízení</td>
</tr>
<tr>
<td></td>
<td>Gatzer Bergdeich (Vockerode) (246 – 248, vlevo)</td>
<td>212</td>
<td>studie</td>
</tr>
<tr>
<td></td>
<td>Oberluch u Roßlau (253,5 – 256,6)</td>
<td>140</td>
<td>dokončení začátkem roku 2005</td>
</tr>
<tr>
<td></td>
<td>Lödderitzer Forst pod Akenem (278,0 – 283,7)</td>
<td>600</td>
<td>přípravné plánování</td>
</tr>
<tr>
<td></td>
<td>Hohenwarthe (341 – 343)</td>
<td>75</td>
<td>předloha</td>
</tr>
<tr>
<td></td>
<td>Gliedernberg (341,5 – 345,5)</td>
<td>180</td>
<td>opatření nebudou zrealizována, protože jsou ve vývoji nezbytné ekonomické hledisko a vedla by ke zhoršování situace na toku Ohre</td>
</tr>
<tr>
<td></td>
<td>ústí Ohre (347,5 – 349,0)</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kletznicke (378,0 – 384,0)</td>
<td>160</td>
<td>studie</td>
</tr>
<tr>
<td></td>
<td>Sandau-jih (412,5 – 416,0)</td>
<td>124</td>
<td>přípravné plánování</td>
</tr>
<tr>
<td></td>
<td>Sandau-sever (416,5 – 422,0)</td>
<td>95 (přednostní varianta, max. varianta měla 140)</td>
<td>přípravné plánování</td>
</tr>
<tr>
<td>Braniborsko</td>
<td>jižně od obce Mühlberg (Borschütz) (120,5 – 125,0)</td>
<td>100</td>
<td>na základě výsledků přípravných průzkumů přednostní varianta</td>
</tr>
<tr>
<td></td>
<td>Lenzen (Böser Ort) (476,7 – 483,6)</td>
<td>425</td>
<td>finanční náročnost 12,6 mil. EUR, stavba byla zahájena v roce 2005</td>
</tr>
<tr>
<td>Dolní Sasko</td>
<td>Neu Bielecke (546 – 554)</td>
<td>60</td>
<td>územní řízení</td>
</tr>
</tbody>
</table>

Země Sasko-Anhaltsko a Braniborsko se shodují v tom, že využívání Havolské nížiny bude umožněno za extémních povodní i do budoucna. Tomuto úkolu se přikládá zvláštní význam, protože nelze vyloučit klimatické změny a vydatné srážky se vyskytují čím dál častěji. Proto se 26. listopadu 2002 spolkové země dohodly na tom, že zadají ve dvoustupňovém znaleckém posudku nejdrive zpracování hydraulico-hydrologického vyhodnocení povodně ve povodí Labe v roce 2002, aby následně bylo možno navrhnout optimalizační opatření ke zlepšení a rozšíření ochrany z hlediska hydrauliky/hydrologie, hydrotechniky a ekologie.

Souběžně byl zpracován počítačový program k řízení zatápění, který je nezbytným nástrojem pro operativní aplikaci za povodně. Dále byly pro celou Havolskou nížinu pořízeny letecké snímky, na jejichž základě byl zpracován
2.6 Studie o vlivu velkých údolních nádrží na Vltavě, Ohři a Sále na průběh povodní na Labi

Česká republika

Studie důsledně vycházela ze zadání obsaženého v Akčním plánu. Byl zpracován matematický model české části povodí Labe, který ve své podstatě vycházel z modelovacího systému Aqualog, používaného předpovědní službou ČHMÚ, a byl doplněn o modelové komponenty pro transformaci povodňové vlny nádrží. Model bral v úvahu nádrže, které mají vymezenou podstatnější retenční prostor, tj. Lipno a Orlík (obr. 2.6-1) na Vltavě a Nechranice na Ohři.

Protože však v některých letech nenáležely maximální roční průtoky na Labi, Vltavě a Ohři ke stejné povodňové udalosti, bylo třeba simulovat větší počet povodní. Vlastním simulacím předcházela etapa přípravy vstupních dat srážek a průtoků, což bylo zejména pro starší povodně velmi náročné. Simulace byly provedeny v šestidenním kroku.

Pro model transformace vlny nádržemi byl odvozen algoritmus chování nádrže, který vycházel z pravidel současně platných manipulačních řádů a zkušeností vodohospodářských dispečíků. Cílem bylo nasimulovat, jak by při historických povodních nádrže fungovaly za dnešních podmínek. Přitom bylo nutno přijmout řadu zjednodušujících předpokladů, včetně volby počátečních hladin před povodní, nemohly být ani postiženy subjektivní reakce dispečera na případné nepředvídané okolnosti. Problémy se sestavením automatického algoritmu vlastně potvrdily nezastupitelnou roli dispečera v procesu řízení povodí.

Výsledkem provedených simulací jsou soubory povodňových vín v jednotlivých vodohospodářských stanicích na Labi, Vltavě a Ohři za celé uvedené období, a to ve dvou variantách:
První zpráva o plnění Akčního plánu povodňové ochrany v povodí Labe bez nádrží (jakoby přirozený režim),

s nádržemi Lipno, Orlík a Nechranice.

Z těchto souborů povodňových vln byly vytvořeny časové řady ročních maximálních průtoků (opět ve dvou variantách), které byly standardním postupem statisticky zpracovány do formy N-letých průtoků.

Výsledky, které jsou k dispozici:

- charakteristiky povodňového režimu ovlivněného a neovlivněného údolními nádržemi ve vodoměrných stanicích na Labi (N-leté průtoky, tvar a objem simulovaných vln),
- odhad přesnosti simulovaných povodňových vln a hodnocení pravděpodobnosti výskytu maximálních průtoků,
- stanovení efektivního dosahu vlivů jednotlivých nádrží,
- posouzení možnosti optimalizace provozu nádrží z hlediska ochrany před povodněmi.

Výsledky zpracování ukázaly, že rozměry, ve kterém se pohybuje zmenšení průtoků vlivem manipulací Vltavské kaskády, nevybočuje z výsledků předcházejících studií. Ukázalo se, že v absolutním měřítku se vliv Vltavské kaskády nejvíce projevuje v oblasti povodní s dobou opakování 10 až 20 let. Jak při zmenšování, tak při zvětšování doby opakování (tj. kulminačního průtoku) její účinek klesá (obr. 2.6-2).

Výsledky získané pro nádrž Nechranice jsou odlišné, její retenční schopnost v porovnání s povodňovými průtoky Ohře je tak velká, že zmenšení maximálních průtoků s dobou opakování, tj. s velikostí kulminačního průtoku, stoupá v celém rozsahu dob opakování 1 rok až 100 let (obr. 2.6-3).

Zmenšení N-letých průtoků ve stanicích na Labi nad soutokem s Ohří způsobené Vltavskou kaskádou klesá směrem po toku jen velmi málo, ve stanicích Ústí nad Labem a Děčín pod soutokem s Ohří je znatelně zvětšeno o vliv nádrže Nechranice. Výsledné zmenšení maximálních šestichodinových průtoků ve stanicí Děčín (obr. 2.6-4) je pro průtok s jednoletou dobou opakování přibližně 190 m³.s⁻¹ (15 %), maxima 340 m³.s⁻¹ (13 %) dosahuje u desetileté doby opakování, u stoleté povodně je zmenšení 250 m³.s⁻¹ (6 %).

Odvození N-letých průtoků pro ovlivněný stav povodí se uskutečnilo na základě výsledků získaných ze simulačních modelů. Tyto modely pracovaly
Obr. 2.6-2: Čáry opakování ročních maximálních průtoků, Vltava v Praze (zdroj: ČHMÚ - VaV/650/6/03)

Obr. 2.6-3: Čáry opakování ročních maximálních průtoků, Ohře v Lounech (zdroj: ČHMÚ - VaV/650/6/03)
První zpráva o plnění Akčního plánu povodňové ochrany v povodí Labe

Zajímavou zprávu o plnění Akčního plánu povodňové ochrany v povodí Labe v Děčíně vybral ČHMÚ VaV/650/6/03. Opravdu má smysl, nejen k prvnímu zprávě, ale i ke všem následujícím případům. Užívá se, neváhejte se k jejímu otevření.

Obr. 2.6-4: Čáry opakování ročních maximálních průtoků, Labe v Děčíně (zdroj: ČHMÚ - VaV/650/6/03)

![Diagram s čárkami pro ilustraci údajů o maximálních průtokech v Labe v Děčíně.]

Zajímavý je způsob, jakým tento údaj je ilustrován. Můžeme se tímto diagramem spojit s většími údaji a shromážděním údajů. V některých případech lze nalézt, že údaje s němým hlasem budou zpracována nebo prohlížena. Pro významnější údaje může být nutné k odpovědi, nebo skutečně vypočítat časově závislé údaje.

Spolková republika Německo

Spolková republika Německo řeší studii o vlivu údolních nádrží na Sále (obr. 2.6-5) a jich manipulace na průběh povodí na Labi. Tuto studii řeší pro německou stranu Společné výzkumné centrum (JRC) Evropské komise v Ispře.

Cílem studie je simulace různých scénářů průběhu povodí, jako je např. charakterizace povodňového režimu ve vodoměrných stanících na Labi s vlivem a bez vlivu nádrží. Touto metodou je možné určit efektivní dosah nádržské úpravy povodí velkoměstských povodí. Dále je zapotřebí odhadnout přesnost nasimulovaných povodňových vln a pozorovat pravděpodobnost výskytu maximálních průtoků.

Podařilo se dokončit zpracování a konverzi poskytnutých dat k využívání v modelu LISFLOOD pro simulaci povodní.

V roce 2005 provedlo JRC navíc další zdokonalení modelu LISFLOOD – jako např. lepší a detailnější zapojení dat příčných profilů s cílem umožnit přesnější výpočty šíření vln a úpravy pro složku podzemních vod. Kalibrace a validace modelu (obr. 2.6-6) byly dokončeny koncem roku 2005.

V návaznosti na kalibraci modelu budou vypočítány scenáře pro Sálu a Labe. V rámci pracovní skupiny Povodňová ochrana MKOL byly diskutovány výpočty možných scenářů. Na závěr bylo sestaveno 97 vhodných scenářů. Scénáře obsahují varianta řešení různých možností provozu nádrží na Sále (obr. 2.6-5) v kombinaci s dalšími technickými opatřeními, jako je na Labi plánování odlehčovacích poldrů nebo oddálení ochranných hrází od toku. Výpočty budou prováděny vždy na základě současného a v budoucnosti předpokládaného stavu. Touto metodou lze násimulovat např. různé počáteční hladiny v nádržích (např. plná, 50 %, 30 % atd.) nebo různé manipulační pravidla vzhledem k otevírání a uzavírání výpustí z hlediska času a průtoku.

Protože předávání a zpracovávání dat bylo složitější a časově náročnější, než se původně očekávalo, počítá se s tím, že v souvislosti s řešením studie mohou být výpočty scenářů dokončeny až koncem roku 2006.
3 PRIORITNÍ OPATŘENÍ NA LABI A NA DOLNÍCH ÚSECÍCH PŘÍTOKŮ

3.1 Realizace opatření technické povodňové ochrany v České republice

V České republice jsou technická preventivní opatření na ochranu před povodněmi zajišťována a financována dvěma způsoby:

1. ze státního rozpočtu (správci vodních toků realizují opatření prostřednictvím programu Prevence před povodněmi v gesci Ministerstva zemědělství),

2. z rozpočtu samospráv (např. Praha, Ústí nad Labem, Lovosice). Tyto akce mají lokální význam.

V letech 2002 až 2005 byla prostřednictvím programu Prevence před povodněmi realizována konkrétní opatření, která systémově navazovala na výsledky Studii odtokových poměrů zpracovaných v předchozích letech. Jednalo se zejména o zvýšení povodňové ochrany krajského města Pardubice prostřednictvím souboru opatření zajišťujících ochranu na Qₓₓₒₓ, rekonstrukci ochranných hrázi na řece Labi v Hradci Králové a rekonstrukci bezpečnostního přelivu VD Nechranice na řece Ohři (obr. 3.1-1), která umožnila zvýšit ovladatelný retenční prostor až na cca 106 mil. m³ a zvýšení ochrany území podél Ohře pod vodním dílem z Qₓₓ na Qₓₓ. Přehled je znázorněn v tabulce 3.1-1.

Tab. 3.1-1: Přehled investičních opatření realizovaných v rámci programu Prevence před povodněmi na Labi a na dolním úseku Ohře

<table>
<thead>
<tr>
<th>Č.</th>
<th>Investor</th>
<th>Název vodního toku</th>
<th>Účel opatření</th>
<th>Finanční náklady [mil. Kč]</th>
<th>Termín výstavby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Povodí Labe, s. p.</td>
<td>Labe</td>
<td>protipovodňová hráz, pravý břeh, Brozany - Cihelna</td>
<td>22,179</td>
<td>10/02 – 12/05</td>
</tr>
<tr>
<td>2.</td>
<td>Povodí Labe, s. p.</td>
<td>Labe</td>
<td>protipovodňová ochrana, pravý břeh, Cihelna - železniční most</td>
<td>45,704</td>
<td>02/04 – 06/06*</td>
</tr>
<tr>
<td>3.</td>
<td>Povodí Labe, s. p.</td>
<td>Labe</td>
<td>protipovodňová ochrana, pravý břeh, Brozany - Řaby</td>
<td>14,725</td>
<td>06/05 – 12/06*</td>
</tr>
<tr>
<td>4.</td>
<td>Povodí Labe, s. p.</td>
<td>Labe</td>
<td>protipovodňová ochrana, levý břeh</td>
<td>51,206</td>
<td>08/05 – 12/06*</td>
</tr>
<tr>
<td>5.</td>
<td>Povodí Labe, s. p.</td>
<td>Labe</td>
<td>Pardubice, prohlubování koryta, jez - Loučná</td>
<td>69,163</td>
<td>07/05 – 12/06*</td>
</tr>
<tr>
<td>6.</td>
<td>Povodí Labe, s. p.</td>
<td>Labe</td>
<td>Hradec Králové-Předměřice, zvýšení protipovodňové ochrany města</td>
<td>33,437</td>
<td>10/05 – 12/06*</td>
</tr>
<tr>
<td>7.</td>
<td>Povodí Labe, s. p.</td>
<td>Labe</td>
<td>VD Les Království, zvýšení ochranné funkce nádrže</td>
<td>41,679</td>
<td>09/05 – 12/06*</td>
</tr>
</tbody>
</table>

Celkem 343,093

* Akce ještě není stavebně dokončena.

Tab. 3.1-2: Přehled realizovaných Studií odtokových poměrů v letech 2003 – 2005 v rámci programu Prevence před povodněmi na Labi a na dolním úseku Vltavy

<table>
<thead>
<tr>
<th>Č.</th>
<th>Rok</th>
<th>Název vodního toku</th>
<th>Ř. km</th>
<th>Délka úseku [km]</th>
<th>Ohrožená města a obce</th>
<th>Finanční náklady [mil. Kč]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2003/2005</td>
<td>Labe</td>
<td>110,0 – 263,0</td>
<td>153,0</td>
<td>Mělník, Neratovice, Kostelec n. L., Brandýs n. L., Čelákovice, Nymburk, Poděbrady, Kolin, Přelouč, Pardubice</td>
<td>7,452</td>
</tr>
<tr>
<td>2.</td>
<td>2004/2005</td>
<td>Vltava</td>
<td>0,0 – 37,0 (aktualizace)</td>
<td>37,0</td>
<td>Nelahozeves, Veltrusy, Kralupy, Dolany, Chvatěruby, Liblice, Řež, Roztoky, Klášterec</td>
<td>1,5</td>
</tr>
<tr>
<td>3.</td>
<td>2004/2005</td>
<td>Vltava</td>
<td>65,0 – 84,0</td>
<td>19,0</td>
<td>Zbraslav, Měchenice, Štěchovice</td>
<td>0,8</td>
</tr>
</tbody>
</table>

Celkem 9,752
3.2 Realizace opatření technické povodňové ochrany v Německu

V tříletém období 2003 – 2005 vyvíjelo Německo velké úsilí o rekonstrukci ochranných hrází podél Labe. Celkem bylo s vynaložením 228,2 mil. EUR zrekonstruováno 241,4 km hrází (tab. 3.2-1). To znamená, že bylo zrekonstruováno cca 70 km více ochranných hrází, než za toto období předpokládal Akční plán povodňové ochrany v povodí Labe.

Tab. 3.2-1: Sanační program „Hráze na Labi“ po jez Geesthacht v období do roku 2015

<table>
<thead>
<tr>
<th>Spolková země</th>
<th>Saska</th>
<th>Sasko-Anhaltsko</th>
<th>Braniborsko</th>
<th>Dolní Sasko</th>
<th>Meklenbursko-Přední Pomořansko</th>
<th>Šlesvicko-Holštýnsko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka ochranných hrází [km]</td>
<td>1 299,2</td>
<td>589,0</td>
<td>203,9</td>
<td>230,0</td>
<td>125,5</td>
<td>3,8</td>
</tr>
<tr>
<td>Ochranné hráze vyžadující rekonstrukci [km], stav k 1. 1. 1991, upraveno k 1. 1. 2006</td>
<td>985,8</td>
<td>482,3</td>
<td>105,9</td>
<td>172,0</td>
<td>94,0</td>
<td>3,8</td>
</tr>
<tr>
<td>Rekonstrukce ochranných hrází provedená v letech 1991 – 2002</td>
<td>197,0</td>
<td>151,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ochranné hráze vyžadující rekonstrukci [km], stav k 1. 1. 2003</td>
<td>788,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rekonstrukce ochranných hrází provedená v letech 2003 – 2005</td>
<td>241,4</td>
<td>228,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plánované rekonstrukce ochranných hrází</td>
<td>528,3</td>
<td>561,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spolková země</th>
<th>Saska</th>
<th>Sasko-Anhaltsko</th>
<th>Braniborsko</th>
<th>Dolní Sasko</th>
<th>Meklenbursko-Přední Pomořansko</th>
<th>Šlesvicko-Holštýnsko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka ochranných hrází [km]</td>
<td>147,0</td>
<td>589,0</td>
<td>203,9</td>
<td>230,0</td>
<td>125,5</td>
<td>3,8</td>
</tr>
<tr>
<td>Ochranné hráze vyžadující rekonstrukci [km], stav k 1. 1. 1991, upraveno k 1. 1. 2006</td>
<td>127,8</td>
<td>482,3</td>
<td>105,9</td>
<td>172,0</td>
<td>94,0</td>
<td>3,8</td>
</tr>
<tr>
<td>Rekonstrukce ochranných hrází provedená</td>
<td>4,7</td>
<td>4,0</td>
<td>47,2</td>
<td>44,1</td>
<td>48,9</td>
<td>25,5</td>
</tr>
<tr>
<td>provedená v letech 1991 – 2002</td>
<td>11,6</td>
<td>11,5</td>
<td>171,3</td>
<td>149,3</td>
<td>14,0</td>
<td>15,0</td>
</tr>
<tr>
<td>provedená v letech 2003 – 2005</td>
<td>8,8</td>
<td>15,6</td>
<td>218,5</td>
<td>193,4</td>
<td>62,9</td>
<td>40,5</td>
</tr>
<tr>
<td>plánovaná v letech 2006 – 2010</td>
<td>35,9</td>
<td>45,6</td>
<td>186,5</td>
<td>156,2</td>
<td>32,4</td>
<td>40,6</td>
</tr>
<tr>
<td>plánovaná v letech 2011 – 2015</td>
<td>64,0</td>
<td>83,2</td>
<td>77,3</td>
<td>76,1</td>
<td>10,6</td>
<td>17,5</td>
</tr>
<tr>
<td>plánovaná v letech 2006 – 2015</td>
<td>99,9</td>
<td>128,8</td>
<td>263,8</td>
<td>232,3</td>
<td>43,0</td>
<td>58,1</td>
</tr>
</tbody>
</table>

* V rámci Naléhavého programu 2005 byla zlepšena stabilita ochranných hrází v délce 29 km.

Na základě vyhodnocení povodně v srpnu 2002 a dalších průzkumných prací zaměřených na stabilitu hrází bylo prokázáno, že bude zapotřebí zrekonstruovat daleko více ochranných hrází.

Údaj z roku 1991 byl přehodnocen a nyní se předpokládá, že rekonstrukce vyžaduje 985,8 km hrází, z nichž bylo do konce roku 2002 opraveno 197 km. Ze zbývajících 788,8 km bylo v letech 2003 - 2005 zrekonstruováno celkem 241,4 km (obr. 3.2-1, 3.2-2 a 3.2-3). Celkem tedy bylo zatím zrekonstruováno 438,4 km (44,5 %).

Za předpokladu, že budou poskytnuty potřebné finanční prostředky, zůstává stanovený cíl reálný, tj. zrekonstruovat v Německu do roku 2015 ochranné hráze na Labi a podél jeho přítoků v oblasti ovlivňované zpětným vzduchem podle obecně uznávaných zásad techniky.

Uvedená délka ochranných hrází se zvětšila celkem o 5,5 %, protože Braniborsko dosud neuvedlo ve statistice pro MKOL ochranné hráze na Havole a podél manipulovatelných odlehlých poldrů Havolské nížiny po město Rathenow. Do jaké míry tyto nově zohledněné úseky vyžadují rekonstrukci, nebylo dosud podrobně řešeno.

Sanační programy Sasky, Sasko-Anhaltska, Braniborska, Dolního Sasko, Meklenbursko-Předního Pomořanska a Šlesvicka-Holštýnska předpokládají, že do roku 2015 bude zrekonstruováno dalších 528,3 km ochranných hrází, což si vyžádá 561,5 mil. EUR (tab. 3.2-2).

Stav rekonstrukce ochranných hrází se v jednotlivých spolkových zemích velmi liší.
Rekonstrukce ochranných hrází

- provedená: 2003-2005
- předpokládaná: 2006-2015
- hráz, která není nutno rekonstruovat

Obr. 3.2-1: Program na rekonstrukci ochranných hrází na Labi od ř. km 65 po město Torgau (zdroj: Wassergütestelle Elbe)

Obr. 3.2-2: Program na rekonstrukci ochranných hrází na Labi od města Torgau po město Tangermünde a na dolních úsecích přítoků (zdroj: Wassergütestelle Elbe)
Sasko se v letech 2002 – 2004 soustředilo především na likvidaci škod a v roce 2005 zlepšilo stabilitu ochranných hrází podél Labe o délce cca 29 km. Další zodkona-
lení ochranných hrází se provádí na základě koncep-
ce povodňové ochrany na Labi a s ohledem na výsledky prací Společného výzkumného centra (JRC) Evropské komise v Ispře.

V Sasku-Anhaltsku bylo ve třech letech po povodní vynaloženo velké úsilí o výrazné zlepšení úrovně povod-
ňové ochrany v zemi. Byla zde v souladu s příslušnou německou normou rekonstruována cca třetina ochran-
ných hrází. V letech 2003 – 2005 byla pouze na Labi pro-
vedena rekonstrukce cca 171,3 km hrází podle příslušné normy. Prioritní opatření na ochranných hrázích se
soustředila na úseky s největšími škodami způsobenými
povodní v srpnu 2002. Zde je třeba uvést především okre-
sy Bitterfeld, Wittenberg, Anhalt-Zerbst a město Dessau.
Například pouze do realizace protipovodňových opatření
ve městě Dessau, zejména do ochrany částí Waldemar,
bylo investováno 40 mil. EUR. Kromě toho zde byla
ve velkém rozsahu uplatněna zvláště řešení (štětové
stěny). Rozsáhlé úkoly byly ve stanovené lhůtě splněny,
dnes tedy město Dessau chrání asi 30 km bezpečných
ochranných hrází odpovídajících německé normě DIN.

Spolkové země Braniborsko, Dolní Sasko, Meklenbur-
sko-Přední Pomořansko a Šlesvicko-Holštýnsko zreali-
zovaly plánované stavební práce na ochranných hrázích
téměř beze zbytku.

Obr. 3.2-3: Program na rekonstrukci ochranných hrází na Labi od města Tangermünde po jез Geestacht a na dolních úsecích přítoků (zdroj: Wassergütestelle Elbe)
V Akčním plánu povodňové ochrany v povodí Labe MKOL jsou naformulovány hlavní cíle ke zdokonalení funkce předpovědních povodňových systémů a na jejich propoření. Cílů by mělo být dosaženo zejména prodloužením předpovědního období, zvýšením přesnosti předpovědi a jejich plnohodnotnosti a lepší komunikaci mezi hlášnými a předpovědními povodňovými centrálními. K dosažení těchto cílů a k implementaci nové protipovodňové strategie jsou plánována nebo již zrealizována dále uvedená opatření.

4.1 Naplňování koncepce pro vybudování společného mezinárodního předpovědního povodňového systému

Systém EFAS je vyvíjen v úzké kooperaci s dalšími členskými státy. Vzájemná dohoda (Memorandum of Understanding – MoU) stanovuje, že JRC poskytne danému národnímu orgánu výsledky systému EFAS v reálném čase a že národní orgán za to poskytuje informace o použitelnosti a správnosti předpovídaných průtoků. Zatím byly pro Labe podepsány tři dohody, a to pro jeho německou část (SRN, Braniborsko, Sasko). Česká strana nabídla podporu a prohlásila, že bude přijímat výsledky systému EFAS. Dohoda mezi JRC a ČHMÚ byla podepsána v únoru 2006.

Výsledky výpočtů v systému EFAS jsou vyjadřovány formou map povodňového nebezpečí a časového rozvoje poplachových stupňů. V současnosti jsou v systému EFAS definovány 4 stupně: velmi vysoký, vysoký, střední a nízký (tab. 4.1-1). Na obr. 4.1-2 a 4.1-3 jsou jako příklad zobrazeny nejvyšší předpovídané poplachové stupně pro dané období, např. pro 10 dní na základě předpovědí ECMWF a pro 7 dní na základě předpovědí DWD.

Obr. 4.1-2 ukazuje kombinaci předpovědí systému EFAS na základě dat DWD a ECMWF. Červeně jsou vyznačeny říční úseky, pro které u obou předpovědí dospěl systém EFAS k „vysokému“ poplachovému stupni, tj. k vysoké pravděpodobnosti výskytu povodí. Velmi jasně se zde projevuje zvýšené riziko rozlivů na přítocích Dunaje v Rakousku, ale i na horním toku Vltavy. Obr. 4.1-3 znázorňuje počet předpovědí systému EFAS, které na základě 51 předpovědí EPS dosáhly „vysokého“ poplachového stupně.
První zpráva o plnění Akčního plánu povodňové ochrany v povodí Labe

Obr. 4.1-1: Úhrny srážek předpovídáných s předstihem 7 dní od DWD (vlevo) a s předstihem 10 dní od ECMWF (vpravo) na základě předpovědi ze 12:00 hod. dne 8. července 2005 (zdroj: JRC Ispra)

Obr. 4.1-2: Kombinovaná mapa poplachových stupní pro „vysoký“ poplachový stupeň pro 8. 7. 2005, 12:00 hod. Rastrové body, ve kterých je „vysokého“ poplachového stupně dosaženo na základě předpovědi DWD a ECMWF, jsou vyznačeny červeně, pouze na základě předpovědi DWD zeleně a pouze na základě předpovědi ECMWF modře. (zdroj: JRC Ispra)

Obr. 4.1-3: Počet průtoků na základě 51 předpovědí EPS ECMWF, které převyšují „vysoký“ poplachový stupeň. (zdroj: JRC Ispra)

Obr. 4.1-4: Časový vývoj poplachových stupňů (zdroj: JRC Ispra)

<table>
<thead>
<tr>
<th>Země:</th>
<th>Česká republika</th>
<th>Země:</th>
<th>Rakousko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vodní tok:</td>
<td>Vltava, přes Sázavu, Blanici</td>
<td>Povodí:</td>
<td>Labe</td>
</tr>
<tr>
<td>Plocha povodí k bodu č. 1:</td>
<td>1 150 km²</td>
<td>Plocha povodí k bodu č. 2:</td>
<td>26 725 km²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Předpověď na</th>
<th>DWD</th>
<th>ECMWF</th>
<th>EPS > HAL</th>
<th>EPS > SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Předpověď na</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECMWF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS > HAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS > SAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DWD Německá meteorologická služba
ECMW European Centre for Medium Range Weather Forecast = Evropské centrum pro střednědobé meteorologické předpovědi
EPS Ensemble Prediction System (51 simulací)

<table>
<thead>
<tr>
<th>Předpověď na</th>
<th>DWD</th>
<th>ECMWF</th>
<th>EPS > HAL</th>
<th>EPS > SAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Předpověď na</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECMWF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS > HAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS > SAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Po závěrečné validaci modelu LISFLOOD pro Labe v jednakikometrovém rastru bude uvedená verze implementována do systému EFAS.

Česká republika

Mezinárodní předpovědní povodňový systém na Labi funguje podle koncepce stanovené v Akčním plánu. Každý stát je zodpovědný za zpracovávání a vydávání předpovědí na svém území. Integračním prvkv společného předpovědního povodňového systému v české a německé části povodí Labe je komunikační síť mezi hlásnými a předpovědními centrálními, které poskytují data a předpovědi. Datový monitoring měřicích sítí a provoz předpovědních modelů zůstávají ve vlastní zodpovědnosti hlásných a předpovědních centrál.

Česká předpovědní centrála v Praze-Komořanech (CPP ČHMÚ) předává informace a předpovědi v dohodnutém rozsahu (viz Směrnice pro hlásnou službu při normálních a extrémních hydrologických situacích v saském úseku státní hranice mezi Spolkovou republikou Německo a Českou republikou) na dvě německé předpovědní centrály: Zemskou povodňovou centrálu Saského úřadu životního prostředí a geologie v Drážďanech a Předpovědní povodňovou centrálu Zemského podniku povodňové ochrany a vodního hospodářství Sasko-Anhaltska v Magdeburku.

Opatření realizovaná ke zdokonalení předpovědního systému na české části povodí Labe:

- Doba předstihu předpovědí vydávaných ČHMÚ se standardně prodloužila na 48 hodin. Prodloužení předstihu předpovědí je založeno na využití hydrologických předpovědních modelů se vstupem kvantifikované předpovědi srážek a kvantifikovaného odhadu vývoje vývoje odpouštěného množství vody z nádrži od jejich správců.
- Předpovědní systém pro českou část povodí Labe byl zdokonalen tak, že byl překalibrován model pro povodí Sázavy a doplněn model pro povodí Ploučnice.
- Počet předpovědních profilů byl zvýšen z 42 profilů na 70 profilů. Předpovědní modely jsou provozovány pravidelně denně, avšak na regionálních předpovědních pracovištích v období bez povodní pouze v pracovní dny.
- Předpovědi jsou předávány vodohospodářským dispečinkům státních podniků Povodí Vltavy, Povodí Labe a Povodí Ohře, předpovědi pro 30 profilů jsou zveřejňovány na internetu.
- Propojení CPP Praha a dvou hlášných a předpovědních centrál v Drážďanech a Magdeburku bylo zautomatizováno přes vyhrazenou adresu na FTP serveru ČHMÚ. Pro německé předpovědní centrály je předávána předpověď z 5 profilů, které jsou významné pro německou část Labe.
- Česká republika se připojila k připravovanému Evropskému systému včasného varování před povodněmi (EFAS). Příjemcem informací EFAS byl určen ČHMÚ, který podepsal s výzkumným centrem EU (JRC) příslušnou dohodu.

Česká republika Německo

Model ELBA, který v Německu v současnosti slouží k předpovídání vodních stavů na Labi, byl ve Spolkovém ústavu hydrologickém (BfG) zdokonalen kalibrací na základě uplynulých velkých povodní a přepracováním vztahu mezi vodním stavem a průtokem pro vodoměrné stanice na Labi.

K dalšímu zkvalitnění předpovídání vodních stavů na vodních cestech Labe a Sály vytvořil Spolkový ústav...

Po dohodě se všemi spolkovými zeměmi podél Labe je v Zemském podniku povodňové ochrany a vod-ního hospodářství (LHW) Sasko-Anhaltska ustavena společná Předpovědní povodňová centrála Labe, která bude zajišťovat zpracovávání a vydávání povodňových předpovědí pro tok Labe. S podporou orgánů vodní a plavební správy SRN jsou v Předpovědní povodňové cen-trále za povodně vypočítávány povodňové předpovědi pro úsek Labe od Ústí n. L. po jez Geesthacht, pro dolní tok Sály a dolní tok Havoly. Zemská povodňová cen-trála v Sasku zpracovává v případě povodně v saském úseku Labe předpovědi pro vodoměrné stanice na Labi na saském území. Tyto prognózy přebírá Předpovědní povodňová centrála pro společné povodňové předpovědi na Labi.

Na základě vyhodnocení povodně v srpnu 2002 bylo zjištěno, že varovné zprávy a prognózy musí vycházet z celkového hodnocení a musí být vydávány jedinou in-stitučí. Proto byla na základě tehdejších 4 zemských povodňových centrál s regionálními kompetencemi v Sasku založena Zemská povodňová centrála na Sasm-kém zemském úřadě životního prostředí a geologie.

Zákonem byla nově upravena informační povodňová služba a poplachová služba. Podle vyhlášky o informační
povodňové a poplachové službě ze dne 17. srpna 2004
dostavá každý povodňový orgán všechny relevantní
povodňové zprávy přímo ze Zemské povodňové cen-
trály, což znamená, že tato centrála vydává informace
až po úroveň obcí s tím, že faxem rozesílá příslušné
varování před povodňovým nebezpečím a hlášení
o povodňových stavech [obr. 4.1-5]. Informace o začátku,
resp. o zhoršení povodňové situace se navíc rozesílají
SMS jako spěšná povodňová zpráva. Příjem zprávy po-
moci SMS je třeba potvrdit Zemské povodňové centrá-
le, aby bylo zajištěno, že adresát informace opravdu ob-
držel. Nedojde-li k potvrzení příjmu, je o této skuteč-
nosti informován příslušný dohlížecí orgán, aby bylo možné
odstranit případné poruchy v přenosu hlášení.

Na zlepšování povodňové předpovědi se v Zemských
povodňových centrálech právě právě pracuje, a to v úzké spolu-
práci s Německou meteorologickou službou, se Spol-
kovým ústavem hydrologickým a sousedními státy a za
podpory výzkumných institucí.

Prodloužením českých předpovědí pro stanici Ústí
n. L. na 48 hodin bylo možné rozlišit období odha-
du pro předpovědi na toku Labe ve stanici Drážďany
až na 60 hodin. V současnosti využívaný předpovědní
povodňový model „Horní Labe“ byl dokalibrován na
základě povodně v roce 2002, proto i účelnosti do této
extrémnosti předpovídat s dostatečně přesností.

Modely, které byly dosud využívány k předpovídání po-
vodní na horním a dolním toku Bílého Halštrova, byly
kompletně upraveny a sloučeny do jednotného předpo-
vědního modelu, který je založen na srážko-odtokovém
modelu. Díky tomu lze na dolním toku Bílého Halštrova
vydávat předpovědi s předstihem až 48 hodin.

Pomoci projektu „Vývoj integračního přístupu k opera-
tivnímu povodňovému managementu na příkladu toku
Mulde“, který je podporován vládou SRN, byly pro řeku
Mulde vytvořeny podklady pro nový předpovědní model,
 který by měl být zaveden do běžného provozu rovněž
v roce 2006. Poté bude pro tok Mulde ve Sasku umožněna
doba předstihu předpovědi do 48 hodin.

Všechny modely budou integrovány do jednotné-
ho prostředí systému v Zemských povodňové centrále
v Drážďanech.

Pro Zemskou povodňovou centrálu byl zřízen webo-
vý systém pro management dat, předpovědí a infor-
mací, který zajišťuje stahování, přijímání a zveřejňování
dat potřebných pro informační povodňovou službu a její-
ch zpracovávání pro využívání v předpovědním systé-
tu. Systém zabezpečuje centrální a záložní ukládání
všech dat a dokumentů a v případě povodňového
vyhlašení poplachu a automatického rozšiřování
povodňových zpráv. Uvedený systém nabízí moderní
datové rozhraní pro výměnu dat a informací (např. se
sousedními zeměmi, spolkovými orgány nebo přísluš-
nými povodňovými organy).

Zemská povodňová centrála v Drážďanech je partnerem
v systému včasného varování před povodňemi EU
(projekt EFAS) pro povodí Labe.

Ke zlepšení hlásné povodňové služby Sasko-Anhaltska
byly práce od 1. května 2003 soustředěny v Zemském
podniku povodňové ochrany a vodního hospodářství
a v Magdeburku byla zřízena moderní Předpovědní
povodňová centrála (HVZ) Sasko-Anhaltska. Do 30.
června 2004 byla provedena rekonstrukce prostorů a
techniky HVZ, hlavní funkce byly uvedeny do provo-
zu začátkem března 2005. Na dokončení informačního
systému pro veřejnost se ještě pracuje.

K zajištění dostupnosti údajů z vodoměrných stanic
organů správy vodních cest byl vytištěn elektronický
přístup k databázi těchto orgánů s možností stahování
dat v daných časových intervalech.

V rámci vyhodnocování povodní v srpnu 2002 byla
upravena Sasko-Anhaltská směrnice pro hlášení
povodňových situací s přihlédnutím k požadavkům
postižených okresů, měst a obcí.

Zemské předpovědní povodňové modely pro Sálu, Bode
a Ilse byly upraveny.

Partnerem v systému včasného varování před povod-
němi EU (projekt LISFLOOD/EFAS) je pro povodí Labe
Předpovědní povodňová centrála v Magdeburku.
První zpráva o plnění Akčního plánu povodňové ochrany v povodí Labe

Obr. 4.1-6: Spolupráce a výměna dat mezi hlásnými a předpovědními centrály v povodí Labe (zdroj: BfG, ČHMÚ)

Hlásné a předpovědní povodňové centrály (HPC) a jejich územní působnost

Vysvětlivky
- státní hranice
- hranice spolkových zemí
- rozvodnice povodí Labe
- hlásná a předpovědní centrála

HPC České Budějovice (ČHMÚ)
HPC Hradec Králové (ČHMÚ)
HPC Plzeň (ČHMÚ)
HPC Ústí nad Labem (ČHMÚ)
HPC Praha (ČHMÚ)
HPC Dresden (Sasko)
HPC Halle (Sasko-Anhaltsko)
HPC Magdeburg (Sasko-Anhaltsko)
HPC Gera (Duryňsko)
HPC Erfurt (Duryňsko)
HPC Cottbus (Braniborsko)
HPC Potsdam (Braniborsko)
HPC Schwerin (Meklenbursko-P. Pomorany)
HPC Lüneburg (Dolní Sasko)
HPC Ratzeburg (Šlesvicko-Holštýnsko)
Vodní a plavební úřad Magdeburg (Vodní a plavební správa)
Vodní a plavební úřad Lauenburg (Vodní a plavební správa)

Obr. 4.1-6: Spolupráce a výměna dat mezi hlásnými a předpovědními centrálními v povodí Labe (zdroj: BfG, ČHMÚ)
4.2 Naplňování koncepce pro modernizaci technického vybavení měřicích sítí a spojových cest

Česká republika

Modernizace měřicích sítí ČHMÚ na české části povodí Labe probíhá v rámci dvou programů Ministerstva životního prostředí, projektu Modernizace předpovědní a výstražné služby ČHMÚ a podprogramu Hlásný systém povodňové ochrany. Byly postaveny nebo rekonstruovány vodoměrné stanice zapojené v systému hlásné povodňové služby a vybaveny přístrojovou technikou. Nové stanice jsou vybavovány podle zásad obsažených v Akčním plánu.

Mimo to modernizují své měřicí sítě vodohospodářské dispečinky státních podniků Povodí. Tyto sítě slouží pro provozní potřeby těchto podniků, zejména pro řízení provozu vodohospodářských soustav, a částečně se překrývají s měřicí sítí ČHMÚ.

Opatření realizovaná k modernizaci technického vybavení měřicích sítí a spojových cest na české části povodí Labe:

- Byly postaveny 4 nové vodoměrné stanice a stavebně rekonstruováno 50 vodoměrných stanic.
- Vodoměrné stanice v hlášných profilích byly vybaveny novou přístrojovou technikou. Počet hlášných profilů kategorie A s dálkovým přenosem dat se v povodí Labe zvýšil na 110, hlášných profilů kategorie B na 50.
- Systémy sběru dat postupně přecházejí na využití moderních GPRS, což umožňuje zmenšit intervale přenosu při stejných provozních nákladech. Klasické připojení prostřednictvím telekomunikačních sítí JTS nebo GSM zůstává zachováno jako záložní.
- U nově vybavovaných stanic se již nepočítá s hlášovým výstupem. Informování veřejnosti o aktuálním stavu v hlášných profilích je zajištěno ježí zpřístupněním na internetu, pověření funkcionáři povodňové služby budou navíc informovat automaticky SMS.
- Síť automatických srážkoměrných stanic byla rozšířena o 42, takže nyní jsou v povodí Labe jako vstup do hydrologických modelů využívány data ze 200 stanic.
Pro měření povodňových průtoků v točích pořídil ČHMÚ druhou soupravu dopplerovského průtokoměru ADCP (typ Rio Grande), která je lokalizována v Praze, a jednu soupravu pro menší toky (Stream-Pro), která je na pobočce v Hradci Králové.

Spolková republika Německo

Do předpovědního systému WAVOS vstupují data ze 26 vodoměrných stanic orgánů vodní a plavební správy. V devadesáti letech byly všechny stanice vybaveny dálkovým přenosem dat. Také po povodni v roce 2002 se tato technická vybavenost považuje za dostávající.

Síť vodoměrných stanic v Sasku byla nově technicky koncipována. Spolehlivost provozu hlásných povodňových profilů se zvětšuje pomocí záložního vybavení sběru naměřených dat, jejich přenosu a zásobování elektřinou. V současnosti je dálkovým přenosem dat vybaveno 96 ze 100 hlásných povodňových profilů v povodí Labe a jimi naměřená data jsou on-line k dispozici Zemské povodňové centrále. Dále jsou umísťována na internetu na informační platformě Zemské povodňové centrály, kde jsou dostupná veřejnosti téměř v reálném čase.

Ve spolupráci s Německou meteorologickou službou (DWD) se instaluje automatická měřicí síť ombrometrů. Kromě lepšího kvantitativního podchycení srážek na daném území pomoci radarových stanic znamená on-line dostupnost srážek (monitoring) pro předpovídání povodní značný informační přínos. Naměřené hodnoty ze všech 22 ombrometrů zemské měřicí sítě jsou k dispozici on-line s rozlišením jedné minuty.

Zemská povodňová centrála má předpoklady k datové komunikaci s dalšími předpovědními centrály na bázi internetu.

V zájmu zvýšení plošné hustoty sitě srážkoměrných stanic bylo ve spolupráci s Německou meteorologickou službou pořízeno 5 ombrometrů, jejichž provoz má být zahájen do poloviny roku 2006. S tím spojené náklady dosáhnou cca 50 000 EUR.

V 8 vodoměrných stanicích byly nainstalovány stacionární ultrazvukové průtokoměry, aby bylo v případě povodně zabezpečeno rychlé zjišťování průtoků i ve stanicích se zvlášť obtížnými hydraulickými poměry.

Pro operativní provoz v případě povodně jsou k dispozici tři flexibilní průtokoměry (ADCP).

V roce 2005 se začalo s budováním ombrometrické sítě zahrnující přibližně 20 srážkoměrných stanic, které budou ve vlastnictví Durynska.
4.3 Realizace doporučení ke zlepšení povodňových zabezpečovacích a záchranných prací a preventivní opatření ohrožených subjektů

Česká republika

Na doporučení ke zlepšení povodňových zabezpečovacích prací a preventivních opatření jsou ohrožené subjekty upozorňovány v rámci pravidelných školení nebo v rámci povodňových cvičení. Konkrétní realizace je kontrolována jak v rámci povodňových cvičení, tak při povodňových prohlídkách. Pro přípravu povodňových orgánů byl Ministerstvem životního prostředí a rozvoje krajů vypracována instrukční film „Povodňové starostí pana starosty“.

Spolková republika Německo

Povodeň na Labi v srpnu 2002 ukázala, jak důležitý je v takových extrémních situacích včasný a odborně kompetentní zásah. Vzhledem k tomu, že společnost si nemůže dovolit absolutní protipovodňovou ochranu, musí si dotčení obyvatelé a podniky zajistit účinná preventivní opatření z vlastních sil. Uvedená doporučení jsou podporou kompetentním institucím a postiženým občanům i podnikům při realizaci. Ve sledovaném období proběhla celá řada aktivit ke zlepšení povodňových zabezpečovacích a záchranných prací a preventivních opatření ve vlastní režii.

Realizace doporučení byla v Saska zajištěna nejprve zavedením povodňové organizace vyvolená zákonem 79/2001 Sb. Vzhledem k tomu, že společnost si nemůže dovolit absolutní protipovodňovou ochranu, musí si dotčení obyvatelé a podniky zajistit účinná preventivní opatření z vlastních sil. Uvedená doporučení jsou podporou kompetentním institucím a postiženým občanům i podnikům při realizaci. Ve sledovaném období proběhla celá řada aktivit ke zlepšení povodňových zabezpečovacích a záchranných prací a preventivních opatření ve vlastní režii.

Saské státní ministerstvo životního prostředí a zemědělství (SMUL) intenzivně usilovalo o posílení povodňové ochrany ve vlastní režii. Realizace doporučení byla v Saska zajištěna nejprve zavedením povodňové organizace vyvolená zákonem 79/2001 Sb. Vzhledem k tomu, že společnost si nemůže dovolit absolutní protipovodňovou ochranu, musí si dotčení obyvatelé a podniky zajistit účinná preventivní opatření z vlastních sil. Uvedená doporučení jsou podporou kompetentním institucím a postiženým občanům i podnikům při realizaci. Ve sledovaném období proběhla celá řada aktivit ke zlepšení povodňových zabezpečovacích a záchranných prací a preventivních opatření ve vlastní režii.

Spolková republika Německo

Povodeň na Labi v srpnu 2002 ukázala, jak důležitý je v takových extrémních situacích včasný a odborně kompetentní zásah. Vzhledem k tomu, že společnost si nemůže dovolit absolutní protipovodňovou ochranu, musí si dotčení obyvatelé a podniky zajistit účinná preventivní opatření z vlastních sil. Uvedená doporučení jsou podporou kompetentním institucím a postiženým občanům i podnikům při realizaci. Ve sledovaném období proběhla celá řada aktivit ke zlepšení povodňových zabezpečovacích a záchranných prací a preventivních opatření ve vlastní režii.
čenými občany a podniky byly vedeny konzultace o možnostech zabezpečení vlastní prevence.

U operativní povodňové ochrany připadají odborné konzultace při zabezpečení zařízení povodňové ochrany z velké části na odborné poradce pro problematiku ochranných hrází ze Zemského podniku povodňové ochrany a vodního hospodářství Sasko-Anhaltska.

Výsledkem vyhodnocení srpnové povodně 2002 a lednové povodně 2003 bylo přepracování povodňového plánu okresu Ludwigslust ve spolkové zemi Meklenbursko-Přední Pomořansko. Pro povodňové štáby a další složky
První zpráva o plnění Akčního plánu povodňové ochrany v povodí Labe

Obr. 4.3-1: Příklad scénáře protržení ochranných hrází na Labi v Meklenbursku-Předním Pomořansku (zdroj: STABN Schwerin)

Zapojené do povodňových zabezpečovacích prací bylo provedeno zásadní přepracování map území potenciálně ohrožených povodněmi v povodí Labe v Meklenbursku-Předním Pomořansku.

Ve sledovaném období byla aktualizována vyhláška o zemské hlášné povodňové službě, která nabyla účinnosti 22. září 2005.

Pro operativní zabezpečení povodňových prací je k dispozici počítačový program, kterým lze nasimulovat protržení protipovodňových hrází, příp. kartograficky znázorit jejich dopady (obr. 4.3-1). Pro simulaci je třeba zvolit úsek hráze, vodní stav na Labi a šířku protržení ochranné hráze. V časových krocích je možné zobrazit protékající objem vody, hloubku vody a zaplavované území.

Vypracován byl rovněž digitální informační systém, kde uživatelé mohou získat informace o technických údajích a stavu ochranných hrází a o dalších zařízeních povodňové ochrany.

Plánované rozšíření práce s veřejností ve Šlesvicku-Holštýnsku by mělo sloužit k poskytování informací jednotlivým občanům, a tím napomoci k naplnění povinnosti zabezpečení vlastní prevence.

V oblastech Svobodného a hanzovního města Hamburg, které jsou ohroženy bouřlivým přílivem, se provádějí pravidelná cvičení, jak se chránit před bouřlivým přílivem, a současné se občanům a podnikům poskytují informace o ohrožení a ochranných opatřeních.
4.4 Realizace doporučení ke zlepšení informovanosti veřejnosti a ke zvýšení povědomí o nebezpečí povodní

Česká republika

Ústřední vodoprávní úřady poskytují a garantují informace prostřednictvím Informačního systému veřejné správy – VODA (dále jen „ISVS – VODA“).

Vlastní portál je rozdělen do dvou základních záložek („Aktuální informace“ a „Evidence ISVS“).

Na záložce „Aktuální informace“ jsou vybrané a zejména aktuální informace z datových zdrojů správců povodí a ČHMÚ. Své uplatnění nacházejí především v době povodní, kdy může veřejnost kdykoli získat aktuální informace o průtocích na významných vodních tocích a nádržích v ČR. Prostřednictvím jednotných, přehledných a snadno dostupných aplikací zde lze nalézt také informace o kvalitě vody ve významných vodních nádržích nebo aktuálním přehledu srážkových úhrnů v vybraných stanicích. Vlastní portál je v české a anglické mutaci.

Aplikace Stavy a průtoky na vodních tocích a nádržích je přeložena do jazyků zemí sousedících s ČR.

Podstatným přínosem pro informování veřejnosti i povodňových orgánů na všechny stupněch úrovní situace je internetová aplikace ČHMÚ „Hlásná a předpovědní povodňová služba“ umístěná na adrese http://hydro.chmi.cz/ips_ihc4. Tato aplikace obsahuje Odborné pokyny ČHMÚ pro hlásnou povodňovou službu v ČR a kompletní seznam všech hlásných profilů kategorií A a B včetně jejich evidenčních listů a platných limitů pro stupně povodňové aktivity. Dále obsahuje aktuální informace o vodních stavech a průtocích z 92 stanic v povodí Labe a hydrologickou předpověď pro 30 předpovědních profilů. V meteorologické části aplikace jsou aktuální informace o srážkách ze 75 srážkoměrných stanic v povodí Labe a možnost odkusu na předpověď počasí, radarové informace a předpověď teplot a srážek podle modelu ALADIN.

Významnou úlohou v oblasti informovanosti veřejnosti sehrají odborné články na povodnách v deníku tisku, odborné semináře, prezentace odborných firem a výrobků na veletrzích či vydávání populárních publikačních povodňových událostech jako např. Katastrofální povodeň v České republice v srpnu 2002 (v české a anglické verzi). V posledním období je příprava plánů a programů opatření podle Rámcové směrnice ES pro povodní politiku, která na území ČR řeší i problematiku povodňové ochrany.

Spolková republika Německo

Realizace doporučení ke zlepšení informovanosti veřejnosti probíhá v každém spolkovém zemí na Labi individuální cestou.

Mezi nástroje preventivního chování patří poplachové a povodňové operační plány. Při preventivním chování se sledují níže uvedené strategie:

- senzibilizace obyvatelstva na mimořádné události,
- umístění a aktualizace povodňových značek,
- informační akce, výstavy, prezentace v hromadných sdělovacích prostředcích.

Informování veřejnosti se provádí prostřednictvím publikací, letáků a účasti tisku na ukázkách zařízení povodňové ochrany.

Na internetových stránkách spolkových zemí a orgánů vodní a plavební správy SRN

- Saska (www.umwelt.sachsen.de/fflug)
- Saska-Anhaltsko (www.mlu.sachsen-anhalt.de; www.ihw-isa.de)
- Durynsko (www.tlug-jena.de/newwq/index.html)
- Braniborsko (www.mluv.brandenburg.de)
- Dolní Sasko (www.nlwkn.niedersachsen.de)
- Šlesvicko-Holštýnsko (www.wassersh.de)
- orgány vodní a plavební správy SRN (www.bafg.de, www.wsa-magdeburg.de)

4.4 Realizace doporučení ke zlepšení informovanosti veřejnosti a ke zvýšení povědomí o nebezpečí povodní
získá zainteresovaný občan obecně informace o povodňové ochraně v přírodních i vnitrozemských oblastech, o povodňové prevenci, o hlášné povodňové službě a o postupech při povodni.

K posílení povědomí o povodních jsou kromě toho v některých spolkových zemích na internetu k dispozici mapy s vyznačením ohrožení, mapy povodňových rizik a pracovní mapy pro předběžné vymezení záplavových území.

Včasné informování veřejnosti v případě povodně probíhá v jednotlivých spolkových zemích prostřednictvím tisku, rozhlasu a televize. Vedle toho si lze na internetu zjistit aktuální informace o průběhu povodně a o stavu vody.

Na protipovodňových hrázích v povodí Labe jsou prováděny pravidelné prohlídky, kterých se vedle pracovníků zodpovědných za výstavbu a údržbu systému povodňové ochrany zúčastňují také zástupci zodpovědných složek povodňových zabezpečovacích prací a další zainteresované strany, ale i zástupci hromadných sdělovacích prostředků.

Do zpracování koncepcí povodňové ochrany Saska (viz rovněž kap. 2.3) byli v široké míře zapojeni nositelé veřejných zájmů, občané a také uznávané svazy ochrany přírody.

Na výše uvedených internetových stránkách byly v důsledku povodně uveřejněny mj. také písemné dokumenty:

- informační list „Povodňová ochrana v Sasku – Co bude dále po velké povodni?“
- publikace „Zabezpečení břehů – zlepšení struktury, uplatnění zásad biologického inženýrství v oblasti vodních staveb“ - příručka 1, vydáno v prosinci 2005
- Analýza povodně v roce 2002 na vodních tocích ve východním Krušnohoří (červenec 2004)
- Zpráva managementu - Analýza povodně v srpnu 2002 na vodních tocích ve východním Krušnohoří (červenec 2004)
- Povodně v Sasku - Atlas map rizik (červen 2005)
- Povodně v Sasku - Mapy rizik na CD (červen 2005)
- informační list „Koncepce povodňové ochrany – integrovaná strategie v Sasku“

V Meklenbursku-Předním Pomořansku byl zpracován informační list „Povodně na Labi v srpnu 2002 a v lednu 2003“. V rámci veřejného připomínkového řízení byl vyvěšen odborný plán povodňové ochrany na Labi v Meklenbursku-Předním Pomořansku, který byl po intenzivní diskusi dokončen.

Ve Šlesvicku-Holštýnsku v této době probíhají práce na generálním plánu, který se bude nazývat „Povodňová ochrana na vnitrozemských vodních tocích a retence vody ve Šlesvicku-Holštýnsku“. V rámci zpracování tohoto plánu je široká účast veřejnosti zaručena formou uskutečněných pracovních týmů, složených se zástupcům různých dotčených zájmových skupin.
Akční plán povodňové ochrany v povodí Labe MKOL je významným nástrojem přeshraničního a vnitrostátního managementu povodňových rizik na toku Labe. Tímto plánem byly vyvozeny dalekosáhle důsledky z povodní v srpnu 2002 a převedeny do konkrétních akcí. V hodnoceném období 2003 – 2005 bylo u hlavních témát

- analýza povodňových rizik,
- hlášný a předpovědění povodňový systém a
- opatření ke zlepšení retenčních účinků a opatření technické povodňové ochrany

dosaženo významných výsledků, resp. došlo k posunu na strategické úrovni. Zapojení nevládních organizací a řešení relevantních výzkumných projektů na evropské a národní úrovni rozhodujícím způsobem přispěly ke transparentnosti jednotlivých akcí a k integraci současného stavu znalostí.

V následujícím textu jsou v souhrnu uvedeny výsledky, kterých bylo dosaženo v uplynulých třech letech.

Plnění zásad ke zvýšení retenčního účinku povodí

Studie ke zjišťování povodňových rizik a škod

Zjišťování povodňových rizik a potenciálů povodňových škod patří k základním prvům moderní povodňové ochrany / managementu povodňových rizik, a je proto předmětem aktuálních výzkumných prací v České republice i v Německu. Metody, které byly v rámci těchto projektu vyvinuty a aplikovány, byly prezentovány a diskutovány na dvou seminářích MKOL. Vysoká odborná úroveň práci v pilotních oblastech v České republice a v německých spolkových zemích ležících na Labi, ale i dosažený stav v rámci projektu ELLA, který je součástí programu INTERREG III B, jsou významnými prvky pro vybudování rozsáhlé povodňové prevence a slouží návíc jako základ pro vymezení a stanovení priorit konkrétních opatření na ochranu před povodněmi.

Požadavky na technická zařízení s látkami ohrožujícími jakost vody v oblastech ohrožených povodněmi

V hodnoceném období probíhaly intenzivní práce k této problematice. V roce 2004 byla schválena přepracovaná verze „Mezinárodního varovného a poplachového plánu Labe“, který upravuje systematické předávání informací v případě havarijního znečištění vod v povodí Labe. Vedle toho byl dokončen vývoj Poplachového modelu Labe, s jehož pomocí lze provádět výpočty šíření vlny znečišťujících látek v Labi a poskytovat tyto informace zodpovědným orgánům ležícím níže na toku. V současné době se v souvislosti s aktualizací již zpracovaných podkladových materiálů pro oblast ohrožené povodněmi připravuje inventarizace technických zařízení s látkami ohrožujícími jakost vody a starych zátěží.
Studie o obnově bývalých záplavových ploch a vytvoření dalších retenčních prostor

Studie o vlivu velkých údolních nádrží na Vltavě, Ohři a Sále

Pro průběh povodní na Labi má velký význam přítok vody z Vltavy a Ohře. V rámci grantového projektu, na kterém se podílely zodpovědné české instituce, byl zkoumán vliv na dosah účinků údolních nádrží Lipno a Orlík na Vltavě a nádrž Nechranice na Ohři. Analýzy ukázaly, že údolní nádrže na Vltavě dosahují nejvyššího ochraného účinku v oblasti povodní s dobou opakování 10 až 20 let, nádrž Nechranice dokonce i nad tuto dobu opakování. To se jednoznačně prokázalo i při povodní na jaře 2006, kdy díky tomu nedošlo k většímu ohrožení Prahy a kdy se také podařilo zabránit souběhu kulminací průtoků z Vltavy, Labe a Ohře.

Odpovídající výsledky k účinkům údolních nádrží na Sále budou k dispozici koncem roku 2006.

Opatření technické povodňové ochrany

Opatření v České republice se ve sledovaném období soustředila na horní tok Labe, kde byla realizována významná opatření povodňové ochrany v Pardubicích a v Hradci Králové. Další opatření s lokálním významem pro povodňovou ochranu byla provedena příslušnými orgány v Praze, Lovosicích a v Ústí n. L. Hlavní náplní technické povodňové ochrany v Německu byly sanační práce na ochranách hrázích podél Labe v délce 985,8 km. V hodnoceném období bylo rekonstruováno 241,4 km hrází, z nichž část byla poškozena při srpnové povodni 2002.

Zkvalitnění předpovědního povodňového systému

Realizace doporučení ke zlepšení povodňových zabezpečovacích a záchranných prací a preventivní opatření ohrožených subjektů

V hodnoceném období byly v členských státech MKOL podniknuty intenzivní kroky k tomu, aby se na základě stávajících nebo novelizovaných legislativních předpisů stala povodňová ochrana nedílnou součástí systému prevence pro zabezpečení veřejného pořádku a bezpečnosti a ochrany zdraví a života. K posílení vlastní prevence byly vypracovány státní koncepce povodňové ochrany a mapy povodňových rizik, které byly poskytnuty také ohroženým obcím. Na komunální úrovni se zpracovávají povodňové plány, které se obrací i na občany a podniky. V rámci školení členů povodňových komisí, resp. pracovníků organizací zodpovědných za zabezpečovací a záchranné práce se rozšiřuje aktuální stav vědomostí o využití a účinku opatření povodňové ochrany. K vyhodnocení účinnosti navrhovaných opatření a jejich ekonomické efektivnosti jsou využívány matematické modely.
Realizace doporučení ke zlepšení informovanosti veřejnosti a ke zvýšení povědomí o nebezpečí povodní
V České republice byl vyvinut a zpřístupněn rozsáhlý internetový informační systém v gesci Ministerstva zemědělství a Ministerstva životního prostředí. Tento informační systém je v pěti jazycích (rovněž v němčině a angličtině) a představuje pro všechny zainteresované občany, úřady a podniky (včetně sousedních států) významný zdroj informací. Při povodní na jaře 2006 dostál všem odborným požadavkům a setkal se v celém povodní Labe s vysokým uznáním.

V Německu informují zodpovědné úřady prostřednictvím vlastních publikací, hromadných sdělovacích prostředků a internetu o aktuálním vývoji prevence a varování před povodněmi, přičemž i zde je pozornost zaměřena především na internetové systémy.

Akční plán povodňové ochrany v povodí Labe MKOL z 24. 10. 2003 uložil členským státům pro první bilanční období jeho plnění řadu obsáhlých úkolů. V České republice i v Německu se na jeho realizaci pracovalo velmi intenzivně, a to jak na vnitrostátní, tak i na nadnárodní úrovni. Zejména je třeba vyzdvihnout zkvalitnění a prohloubení předpovědí povodní na mezinárodní úrovni, které se již velmi osvědčilo při povodní na jaře 2006. Díky práci MKOL se navíc podařilo do dalšího zlepšení povodňové prevence a do povodňové ochrany zapojit veřejnost, výzkum a nevládní organizace, a tím zvýšit přijatelnost nezbytných opatření ze strany společnosti. Zachování retenčních prostor, jejich zvětšení a zlepšení jejich ekologické kvality také ve smyslu Rámcové směrnice EU pro vodní politiku si vyžádá další úsilí v oblasti technické povodňové ochrany. Posílení vlastní prevence musí jít ruku v ruce s příslušnými nabídkami informací a školení. V tomto smyslu se osvědčily internetové platformy, jejichž další rozvoj by měl být i nadále podporován.

První zpráva o plnění „Akčního plánu povodňové ochrany v povodí Labe“ v letech 2003 - 2005 ukazuje, jak velký rozsah a úspěch zaznamenala dosud realizovaná opatření. V dalším období se bude nutno zaměřit více na realizaci připravných metodicko-koncepčních prací, ale i prací územního plánování, přičemž hlavní pozornost bude patřit zachování a rozšíření retenčních prostor podél Labe a jeho významných přítoků.