KONCEPCE MKOL PRO NAKLÁDÁNÍ SE SEDIMENTY

Návrhy správné praxe pro management sedimentů v povodí Labe pro dosažení nadregionálních operativních cílů
Publikace byla zpracována v ad hoc skupině expertů „Management sedimentů“ MKOL.

Peter Heininger, Bundesanstalt für Gewässerkunde (vedoucí)

Bohumír Dušek, Ministerstvo životního prostředí ČR
Jarmila Halířová, Český hydrometeorologický ústav
Viktor Kliment, Ministerstvo životního prostředí ČR
Jakub Langhammer, Univerzita Karlova v Praze
Jiří Medek, Povodí Labe, státní podnik
Tjark Hildebrandt, Generaldirektion Wasserstraßen und Schifffahrt, Außenstelle Ost
Petra Kasimir, Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt
Axel Netzband, Hamburg Port Authority
Ina Quick, Bundesanstalt für Gewässerkunde
Sylvia Rohde, Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie
Daniel Schwandt, Bundesanstalt für Gewässerkunde
René Schwartz, Behörde für Stadtentwicklung und Umwelt Hamburg
Stefan Vollmer, Bundesanstalt für Gewässerkunde

Fotografie na titulní stránce:
Přehrada Les Království na horním Labi 24. 5. 2007;
povodňová vlna převáděná spodní výpustí zbarvená unášenými sedimenty
autor: J. Medek, Povodí Labe, státní podnik

Vydavatel:
Internationale Kommission zum Schutz der Elbe (IKSE)
Mezinárodní komise pro ochranu Labe (MKOL)
Postfach 1647/1648
39006 Magdeburg
Deutschland

Tisk:
Harzdruckerei GmbH
Max-Planck-Straße 12/14
38855 Wernigerode
Deutschland

Náklad:
500 výtisků v českém jazyce; 1000 výtisků v německém jazyce
KONCEPCE MKOL PRO NAKLÁDÁNÍ SE SEDIMENTY

Návrhy správné praxe pro management sedimentů v povodí Labe k dosažení nadregionálních operativních cílů

Závěrečná zpráva
ad hoc skupiny expertů „Management sedimentů“

Magdeburk, 2014
<table>
<thead>
<tr>
<th>Obsah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Předmluva</td>
</tr>
<tr>
<td>1. Úvod</td>
</tr>
<tr>
<td>2. Posuzovaný systém</td>
</tr>
<tr>
<td>2.1 Referenční profily kvality a kvantity</td>
</tr>
<tr>
<td>2.2 Relevantní přítoky</td>
</tr>
<tr>
<td>2.3 Aspekt hydromorfologie</td>
</tr>
<tr>
<td>3. Koncepce k odvození doporučených postupů pro nakládání se sedimenty s pohledem na ucelené povodí</td>
</tr>
<tr>
<td>3.1 Koncepce a nejistoty</td>
</tr>
<tr>
<td>3.2 Indikátory kvantity</td>
</tr>
<tr>
<td>3.3 Indikátory kvality a jejich odstupňovaná aplikace</td>
</tr>
<tr>
<td>3.4 Hydromorfologické indikátory a jejich odstupňovaná aplikace</td>
</tr>
<tr>
<td>4. Kvantitativní poměry a analýza rizik z hlediska plavby</td>
</tr>
<tr>
<td>4.1 Metodika, datové podklady a nejistoty</td>
</tr>
<tr>
<td>4.2 Kvantitativní poměry na vnitrozemském úseku Labe</td>
</tr>
<tr>
<td>4.3 Kvantitativní poměry ve slapovém úseku Labe</td>
</tr>
<tr>
<td>4.4 Analýza rizik z hlediska plavby</td>
</tr>
<tr>
<td>5. Analýza rizik z hydromorfologického hlediska</td>
</tr>
<tr>
<td>5.1 Metodika, datové podklady a nejistoty</td>
</tr>
<tr>
<td>5.2 Hydromorfologické poměry vnitrozemského úseku Labe a zaústění jeho hlavních přítoků</td>
</tr>
<tr>
<td>5.3 Hydromorfologické poměry ve slapovém úseku Labe</td>
</tr>
<tr>
<td>6. Analýza rizik z hlediska kvality</td>
</tr>
<tr>
<td>6.1 Metodika, datové podklady a nejistoty</td>
</tr>
<tr>
<td>6.2 Kvalitativní poměry v povodí</td>
</tr>
<tr>
<td>6.3 Údolní nivy a další místa ukládání sedimentů</td>
</tr>
<tr>
<td>6.4 Bodové zdroje</td>
</tr>
<tr>
<td>6.5 Sedimenty a staré sedimenty</td>
</tr>
<tr>
<td>6.6 Staré ekologické zátěže na toku</td>
</tr>
<tr>
<td>6.7 Jiné zdroje</td>
</tr>
<tr>
<td>6.8 Shnult analýzy rizik ve vazbě na zdroje</td>
</tr>
<tr>
<td>7. Návrhy na trvalé udržitelné nakládání se sedimenty a ukládání odtěžených nánosů</td>
</tr>
<tr>
<td>7.1 Kritéria výběru a stanovení priorit doporučení</td>
</tr>
<tr>
<td>7.2 Doporučené postupy z hlediska kvality</td>
</tr>
<tr>
<td>7.3 Doporučené postupy z hlediska hydromorfologie</td>
</tr>
<tr>
<td>7.4 Doporučené postupy z hlediska plavby</td>
</tr>
<tr>
<td>Strana</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>7.5</td>
</tr>
<tr>
<td>7.6</td>
</tr>
<tr>
<td>7.7</td>
</tr>
<tr>
<td>7.8</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>8.1</td>
</tr>
<tr>
<td>8.2</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>8.1</td>
</tr>
<tr>
<td>8.2</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>9.1</td>
</tr>
<tr>
<td>9.2</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>9.1</td>
</tr>
<tr>
<td>9.2</td>
</tr>
</tbody>
</table>

Přílohy

<table>
<thead>
<tr>
<th>A1</th>
<th>Seznam literatury</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>Použité metody</td>
</tr>
<tr>
<td>A2-1</td>
<td>Posuzovaný systém</td>
</tr>
<tr>
<td>A2-2</td>
<td>Datové podklady k aspektu kvantity</td>
</tr>
<tr>
<td>A2-3</td>
<td>Výběr znečištujících látek relevantních pro Labe a klasifikace plavin a sedimentů v referenčních profilech</td>
</tr>
<tr>
<td>A2-4</td>
<td>Analýza hydromorfologických rizik na vnitrozemském úseku Labe ve výběru koncepce pro nakládání se sedimenty</td>
</tr>
<tr>
<td>A2-5</td>
<td>Hydromorfologické zdokumentování a hodnocení estuáru slapového úseku Labe ve výběru koncepce pro nakládání se sedimenty</td>
</tr>
<tr>
<td>A2-6</td>
<td>Analýza rizik z hlediska kvality</td>
</tr>
<tr>
<td>A2-7</td>
<td>Odhad množství sedimentů a starých sedimentů v zónách se zajištěním prouděním a odhad potenciálu odnosů</td>
</tr>
<tr>
<td>A2-8</td>
<td>Možnost remobilizace sedimentů</td>
</tr>
<tr>
<td>A2-9</td>
<td>Odhad vnosů z bodových zdrojů</td>
</tr>
<tr>
<td>A2-10</td>
<td>Inventarizace starých ekologických zátěží na toku, významných pro jakost sedimentů</td>
</tr>
<tr>
<td>A2-11</td>
<td>Výpočet látkových odnosů a jejich znázornění v podobném profilu Labe</td>
</tr>
<tr>
<td>A2-12</td>
<td>Bilance látkových odnosů</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A3</th>
<th>Seznam odborných zpráv</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>Tabulky, mapy, obrázky</td>
</tr>
<tr>
<td>A4</td>
<td>Mapy</td>
</tr>
<tr>
<td>A4-1</td>
<td>K-A4-1: Průměrné koncentrace plavin v povodí Labe (2003 – 2008)</td>
</tr>
<tr>
<td>A4-2</td>
<td>K-A4-2: Hydromorfologický stav v povodí Labe – hodnocení průchodnosti pro sedimenty</td>
</tr>
</tbody>
</table>
K-A4-3: Hydromorfologický stav v povodí Labe – hodnocení bilance sedimentů (D) / \ovlivnění hydrologického režimu (ČZ)\……. 169
K-A4-4: Hydromorfologický stav v povodí Labe – hodnocení variability šířky \……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
Sedimenty plní základní funkce při utváření koryt vodních toků, jako akvatická stanoviště a v koloběhu látek vodních toků. Svým množstvím a svou jakostí hrají klíčovou roli pro nepostradatelné funkce ekosystémů včetně významných způsobů užívání vod. Nakládání se sedimenty se přímo nebo nepřímo dotýká požadavků ochrany vod, vodního hospodářství, dopravy, energetiky, zemědělství, rybolovu a rekreace.

Mezinárodní komise pro ochranu Labe (MKOL) prohlásila již ve svém Prvním akčním programu (1991) za jeden z hlavních cílů své činnosti dobrou jakość sedimentů. V průběhu vypracování prvního mezinárodního plánu pověstí podle evropské Rámcové směrnice o vodách a probíhající implementace Rámcové směrnice o strategii pro mořské prostředí se ukázalo, že nedostatky jak v režimu sedimentů, tak i v jakosti sedimentů jsou podstatnou překážkou při dosažení dobrého stavu vod. Vypracováním Koncepce MKOL pro nakládání se sedimenty byl splněn jeden z cílů prvního Mezinárodního plánu oblasti povodí Labe (2009) a vytvořen předpoklad k tomu, aby se téma sedimentů vzhledem k svému významu stalo integrovanou součástí plánování a praxe v oblasti vodního povodí Labe. Analýzy a závěry koncepce jsou důležité jezem pro zlepšení struktury vod a při snížování významného látkového znečištění.

Koncepce pro nakládání se sedimenty Labe představuje odborný milník na národní i mezinárodní úrovni. Problematika sedimentů je pojednána ve velkém intenzivně obhospodařovaném mezinárodním povodí s cílem odvodit doporučené postupy ke zlepšení stavu vod, které zahrnují také aspekty režimu pevných látek, struktury vodních toků a plavby. Pro podchycení tématu v celé jeho složitosti bylo nutné zvolit ucelený přístup založený na analyzě rizik. Souvislosti mezi příčinou a dopadem jsou zde důsledně řešeny z pohledu uceleného povodí. Do jednotné koncepce vstupují kvantitativní, hydromorfo-logicke a kvalitativní aspekty i hodnoty životního prostředí a způsobů užívání. Ve svém důsledku je předložená koncepce zaměřena na realizaci v praxi.

Na vypracování koncepce pro nakládání se sedimenty se několik let podíleli čeští a němečtí odborníci z nejrůznějších oborů. Jim všem náleží poděkování za vynikající práci.

Dr. Helge Wendenburg
prezident MKOL

Dr. Peter Heiningen
předseda ad hoc skupiny expertů „Management sedimentů“
1. ÚVOD

Úpravy koryt řek, jako je Labe, vedly v posledních staletích k zásadním změnám nejen u odtokové situace, ale i u režimu sedimentů. Režim sedimentů a morfologie vodních toků spolu úzce souvisejí a navzájem se ovlivňují. Přebytek nebo nedostatek sedimentů v důsledku narušeného režimu sedimentů má závažné dopady na ekosystém, na vodní hospodářství, ochranu před povodněmi a plavbu. Jako zdroje kontaminací sedimentů působí staré ekologické zátěže z průmyslu a těžební činnosti a dnešní vnosy z difuzních a bodových zdrojů. Na základě svých chemických vlastností se řada prioritních a pro dané povody specifických znečišťujících látek ukládá především v sedimentech. Kontaminované sedimenty ze zklidněných zón Labe a jeho přítoků představují při zvýšených průtoku i nadále zdroj emisí znečišťujících látek, jejichž vliv se projevuje až do Severního moře. Tyto vnosy jsou mimo jiné důvodem pro to, že v Labi nebude nyní možné dosáhnout dobrého stavu / potenciálu podle Rámcové směrnice o vodách (RSV; ES 2000a) a ani v Severním moři dobrého stavu prostředí podle Rámcové směrnice o strategii pro mořské prostředí (ES 2008a).

Na základě těchto skutečností vypracovala ad hoc skupina expertů „Management sedimentů“ Mezinárodní komise pro ochranu Labe (MKOL) podle usnesení delegací (22. zasedání v roce 2009) koncepci pro nakládání se sedimenty v mezinárodní oblasti povodí Labe.

Vzhledem ke znalosti deficitů daného stavu sedimentů ve velkých částech Labe zahrnoval mandát skupiny expertů od samého počátku zpracování všech tří hlavních aspektů managementu sedimentů – kvantitu, hydromorfológiích a kvalitu. Jako nástroj mezinárodního společenství povodí se tato koncepce zabývá nadregionálními otázkami managementu sedimentů.

V souvislosti s vypracováním koncepce pro nakládání se sedimenty byl pro každý z uvedených tří hlavních aspektů popsán a vyhodnocen daný stav a proveden odhad rizika pro relevantní operativní cíle na základě odvoditelných deficitů daného stavu a zpracována analýza příčin (zdrojů) tohoto rizika. Z těchto skutečností byly vyvozeny závěry formou doporučení pro další postup. Přítom byly stanoveny priority, které se opírají o definovaná kritéria, jako je nadregionální význam, několikanásobný užitek a proveditelnost. Jmenovitě jsou uvedeny cílové konflikty a proveditelnost je doložena řadou názorných příkladů z praxe.

Koncepce pro nakládání se sedimenty by měla přispět k dosažení dobrého chemického / ekologického stavu podle Rámcové směrnice o vodách a dobrého stavu prostředí podle Rámcové směrnice o strategii pro mořské prostředí; v tomto smyslu představuje toto koncepce odborný podkladový materiál pro druhý plán povodí a pro dosažení environmentálních cílů. Analýzy a závěry jsou významné zejména pro řešení těchto významných problémů nakládání s vodami:

- zlepšení struktury a průchodnosti toků
- snížení významného látkového zatížení živinami a znečišťujícími látkami.
2. POSUZOVANÝ SYSTÉM

MKOL zabezpečuje metodické a po obsahové stránce odsouhlasené zpracování plánů povodí pro mezinárodní oblast povodí Labe. V rámci této konцепce pro nakládání se sedimenty je nutno zpracovat relevantní nadregionalní aspekty kvality sedimentů, režimu sedimentů a managementu sedimentů, na proti tomu však nejsou zahrnuty aspekty lokálního nebo regionálně omezeného charakteru. Posuzovaný systém byl definován na základě těchto tří pravidel. Zahrnuje níže uvedené úseky:

- regulovaný vnitrozemský úsek Labe od Němčic po Ústí nad Labem
- volně tekoucí vnitrozemský úsek Labe od Ústí nad Labem po jez Geestacht
- slapový úsek Labe od jezu Geestacht po ústí do Severního moře
- relevantní přítoky
- referenční profily.

Na obrázku 2-1 je znázorněn posuzovaný systém v hranicích mezinárodní oblasti povodí, kde jsou vyznačeny také tři hlavní úseky toku – úsek regulovaný vzdutím, volně tekoucí vnitrozemský úsek a slapový úsek Labe. V rámci hodnocení stavu podle Rámcové směrnice o vodách jsou jako referenční prostory posuzovány vodní útvary. Tento způsob přiřazení nebyl v koncepci pro nakládání se sedimenty použit kvůli nadregionálnímu přístupu a z metodických důvodů. V souvislosti se specifickými otázkami jsou spíše vole- ny různé referenční prostory (viz kap. 2.1 až 2.3).

2.1 REFERENČNÍ PROFILY KVALITY A KVANTITY

Referenční profily slouží k charakterizaci dílčího povodí, které je relevantní pro nadregionální management sedimentů z kvalitativního nebo kvantitativního hlediska. Pro tyto profily jsou zpravidla k dispozici dlouhé řady pozorování kvalitativně zabezpečených monitorovacích programů (viz tab. T-A2-1-1 v příloze A2-1). Vzhledem k tomu, že posuzování situace v následujících kapitolách a odvození doporučených postupů se v každém případě provádí na základě nejlepších dostupných datových podkladů, mohou být u prostorových poloh referenčních profilů v aspektech kvantity a kvality určitě vzájemně odchylky (viz tab. T-A2-1-1 v příloze A2-1).

2.2 RELEVANTNÍ PŘÍTOKY

Při výběru relevantních přítoků byly přítoky rozděleny do dvou kategorií. Přítoky kategorie 1 mají na základě svých kvantitativních charakteristik (viz také kap. 3.2) významný vliv na situaci v hlavním toku. Posuzován je podíl plochy na povodí (A), průtok vody (Q) a transport plavenin (odnos plavenin S). Důležitým kritériem významnosti je minimálně 10% podíl na odnosu plavenin (2003 – 2008) v příslušném referenčním profilu pod soutokem s Labem. Relevantní přítoky této kategorie jsou Orlice, Jizera, Vltava, Ohře, Černý Halštrov (Schwarze Elster), Mulde, Sála (Saale) a Havola (Havel). Přišně vzato, Černý Halštrov toto 10% kritérium sice nesplňuje, avšak jako významný přítok se však do jednoho z kvantitativně nejvíce deficitních úseků Labe (kap. 4.2), a proto je do této kategorie zařazen.

Přítoky kategorie 2 jsou posuzovány výlučně z hlediska kvality. Na režim vody a pevných látek v Labi nemají významný vliv, ovšem vzhledem k jejich znečištění minimálně jednou relevantní znečišťující látkou (kap. 3.3) přispívají značnou měrou k nadregionální balanci znečišťujících látek. Jako kvantitativní kritérium pro příslušný výběr byl stanoven minimálně 10% podíl na celkovém odno- su znečišťující látky na příslušném referenčním profilu. Podle polohy vůči hlavnímu toku se jedná buď o přímé přítoky Labe (kategorie 2a), nebo o přítoky hlavních přítoků kategorie 1 (kategorie 2b). Do katego- rie 2a jsou zařazeny řeky Bílina a Trebsch, do kategorie 2b spadají řeky Sázava, Berounka, zdrojnice řeky Mulde, tj. Zwickauer und Freiberger Mulde (Moldavský potok), Spittelwasser, Blýž Halštrov (Weißer, Elster), Schlenze, Bode a Spréva (Spree). Obrázek 2-2 názorně ukazuje na příkladu kamela kvantitativní poměry a možnou roli malých přítoků. V tabulce T-A2-1-1 (příloha A2-1) jsou uvedena fakta k výběru relevantních přítoků.

2.3 ASPEKT HYDROMORFOLOGIE

Hydromorfologické aspekty managementu sedimentů jsou zpracovány pro tok Labe a v německé části povodí navíc i pro dolní toky přítoků kategorie 1. V české části povodí je provedeno pilotní hodnocení v úsecích s proměnlivou délkou, dosahující v průměru 1 km na středním a dolním toku českého úseku Labe a 0,5 km na horním toku. Celý německý vnitrozemský úsek se hodnotil po úsecích o délce 5 km, v případě potřeby i v podrobnějším rozlišení. Pro slapový úsek Labe byl z důvodu dostupné datové a modelové základny zvolen jiný přístup. „Integrovaný plán povodí pro estuár
Nebenfluss

<table>
<thead>
<tr>
<th>Přítok</th>
<th>Bezugsmessstellen Referenční profil</th>
<th>Quantitá / Kvalita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orlice</td>
<td>Tyńcko n.O.</td>
<td>kvalita</td>
</tr>
<tr>
<td>Jézera</td>
<td>Tupiya</td>
<td>kvalita</td>
</tr>
<tr>
<td>Slázná</td>
<td>Nepomuk</td>
<td>kvalita</td>
</tr>
<tr>
<td>Berounka</td>
<td>Litavice</td>
<td>kvalita</td>
</tr>
<tr>
<td>Vitava</td>
<td>Ž捺navy</td>
<td>kvalita</td>
</tr>
<tr>
<td>Otava</td>
<td>Loučky</td>
<td>kvalita</td>
</tr>
<tr>
<td>Bílina</td>
<td>Terezín</td>
<td>kvalita</td>
</tr>
<tr>
<td>Třebíč</td>
<td>Vsetín</td>
<td>kvalita</td>
</tr>
<tr>
<td>Schusters Eder</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Freiberger Mulde</td>
<td>Mělčina</td>
<td>kvalita</td>
</tr>
<tr>
<td>Zemský N. Mulde</td>
<td>Žuráň</td>
<td>kvalita</td>
</tr>
<tr>
<td>Spilmanuasser</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Mulde</td>
<td>Dessau</td>
<td>kvalita</td>
</tr>
<tr>
<td>Vše Eder</td>
<td>Mělčina</td>
<td>kvalita</td>
</tr>
<tr>
<td>Sobrance</td>
<td>Mělčina</td>
<td>kvalita</td>
</tr>
<tr>
<td>Bode</td>
<td>Neuguttenstein</td>
<td>kvalita</td>
</tr>
<tr>
<td>Saale</td>
<td>Celle</td>
<td>kvalita</td>
</tr>
<tr>
<td>Spree</td>
<td>Seppenrode</td>
<td>kvalita</td>
</tr>
<tr>
<td>Havel</td>
<td>Rathenowar</td>
<td>kvalita</td>
</tr>
<tr>
<td>Hase</td>
<td>Hannoverah</td>
<td>kvalita</td>
</tr>
</tbody>
</table>

Bezugsmessstellen Referenční profil

<table>
<thead>
<tr>
<th>Bezugsmessstellen Referenční profil</th>
<th>Quantitá / Kvalita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labe (Elbe)</td>
<td>kvalita</td>
</tr>
<tr>
<td>Ilmenau</td>
<td>kvalita</td>
</tr>
<tr>
<td>Voly</td>
<td>kvalita</td>
</tr>
<tr>
<td>Cyprin</td>
<td>kvalita</td>
</tr>
<tr>
<td>Dönhoff</td>
<td>kvalita</td>
</tr>
<tr>
<td>Děčín</td>
<td>kvalita</td>
</tr>
<tr>
<td>Schmilka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Pirna</td>
<td>kvalita</td>
</tr>
<tr>
<td>Torgau</td>
<td>kvalita</td>
</tr>
<tr>
<td>Zerren</td>
<td>kvalita</td>
</tr>
<tr>
<td>Domžácky</td>
<td>kvalita</td>
</tr>
<tr>
<td>Vltava</td>
<td>kvalita</td>
</tr>
<tr>
<td>Aken</td>
<td>kvalita</td>
</tr>
<tr>
<td>Hohenhamen</td>
<td>kvalita</td>
</tr>
<tr>
<td>Berchtesgadener Mulde</td>
<td>kvalita</td>
</tr>
<tr>
<td>Meisburg</td>
<td>kvalita</td>
</tr>
<tr>
<td>Tangermünde</td>
<td>kvalita</td>
</tr>
<tr>
<td>Völkerberge</td>
<td>kvalita</td>
</tr>
<tr>
<td>Canisien</td>
<td>kvalita</td>
</tr>
<tr>
<td>Schwenkenberg</td>
<td>kvalita</td>
</tr>
<tr>
<td>Hannoverah</td>
<td>kvalita</td>
</tr>
</tbody>
</table>

Fluss

<table>
<thead>
<tr>
<th>Reka</th>
<th>Bezugsmessstellen Referenční profil</th>
<th>Quantitá / Kvalita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labe (Elbe)</td>
<td>Tyńcko n.O.</td>
<td>kvalita</td>
</tr>
<tr>
<td>Ilmenau</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Voly</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Cyprin</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Dönhoff</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Děčín</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Schmilka</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Pirna</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Torgau</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Zerren</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Domžácky</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Vltava</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Aken</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Hohenhamen</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Berchtesgadener Mulde</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Meisburg</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Tangermünde</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Völkerberge</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Canisien</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Schwenkenberg</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
<tr>
<td>Hannoverah</td>
<td>Mrzka</td>
<td>kvalita</td>
</tr>
</tbody>
</table>

Obr. 2-1: Přehled referenčních profilů managementu sedimentů v povodí Labe
Labe" (IBP 2012) stanovuje sedm funkčních oblastí, které zahrnují úseky Labe v délce cca 20 – 30 km. V kontextu koncepce pro nakládání se sedimenty je hodnoceno šest těchto funkčních oblastí (příloha A2-5, obr. B-A2-5-1).

Obr. 2-2: Kvantitativní poměry (A, Q, Ss) a role malých přítoků z hlediska kvality (Cd)
3. KONCEPCE K ODVOZENÍ DOPORUČENÝCH POSTUPŮ PRO NAKLÁDÁNÍ SE SEDIMENTY S POHLEDEM NA UCELENÉ POVODÍ

Sedimenty jsou pevné látky, unášené vodou a ukládané ve vodním toku. Jsou podstatnou, nedílnou a dynamickou součástí povodí, včetně brakických a pobrežních vod. MKOL vyhlásila již ve svém prvním akčním programu za jeden ze svých stálejších operativních cílů dosažení dobré jakosti sedimentů (MKOL 1995). V souvislosti se zpracováním prvního plánu povodí pro oblast povodí Labe bylo zřejmé, že pro dosažení dobrého stavu vod jsou významnou překážkou deficit je nejen v režimu sedimentů, ale i v jejich kvalitě (MKOL 2009). Koncepce pro nakládání se sedimenty identifikuje rizika pro dosažení hlavních operativních cílů MKOL, které vycházejí z nevyhovujícího stavu sedimentů, posuzuje tato rizika podle jejich významu a na základě této analýzy odvozuje doporučení pro další postup.

Snaha o minimalizaci vnosů znečišťujících látky do vodních toků je již dlouho stálejším bodem evropské ochrany vod. Pro dosažení environmentálních cílů Rámcové směrnice o vodách je nezbytné rozhodným způsobem postupovat vůči identifikovaným deficitům. Tyto kvalitativní požadavky doplňuje od roku 2008 Rámcová směrnice o strategii pro mořské prostředí, která je zaměřena na to, aby se do roku 2020 podařilo dosáhnout dobrého stavu prostředí. Tím se oblast uplatnění pro ekologicky relevantní znečišťující látky rozšiřuje na veškeré mořské vody, včetně sedimentů a mořského dna. Kvíši obsahovým a legislativním stýčním bodům mezi Rámcovou směrnicí o vodách a Rámcovou směrnicí o strategii pro mořské prostředí se usiluje o úzkou provázanost mezi příslušnými plány povodí a programy opatření.

3.1 KONCEPCE A NEJISTOTY

Sedimenty plní hlavní ekologické funkce jako koryto toku, vodní stanovиště a jako centrální prvek ve koloběhu látky v řece a údolní nivě / marší. Jsou základem nepostradatelných výkonů ekosystému. Jejich množství a kvalita rozhodují měrou ovlivňují relevantní způsoby využívání vod. Nakládání se sedimenty je tedy z různých perspektiv významné a prostřednictvím koloběhu látky se dotýká přímo či nepřímo požadavků ochrany vod a vodního hospodářství, dopravy, energetiky, zemědělství, rybolovu nebo využívání pro rekreační účely.

Pokud je stav sedimentů z pohledu na environmentální cíle, funkčnost ekosystému nebo relevantní způsoby využívání vod nevyhovující, je nutno následně se sedimenty vhodným způsobem nakládat v rámci údržby vodních toků. Na základě analýzy rizik je třeba pomocí vhodných indikátorů zjistit, do jaké míry a z jakých příčin nedorazí k dosažení požadovaného stavu. Z odborných důvodů je účelné, aby byl stav sedimentů analyzován a hodnocen na základě aspekty kvantity, kvality a hydromorfológie pomocí příslušných specifických indikátorů. Vzhledem k tomu, že přírozené funkce sedimentů tvoří jednotu, je proto v konečném důsledku nezbytné založit nakládání se sedimenty na ucelené koncepci, která zohledňuje a v dostatečné míře zahrnuje všechny tři aspekty.

Říční povodí jsou otevřené systémy, složené z dílčích navzájem se ovlivňujících systémů. Velikost, topografie a lidské činnosti určují zdroje, cesty šíření a toky vody, sedimentů, živin a znečišťujících látek. Zásahy do režimu a do kvality sedimentů a jejich důsledky jsou na sobě často nezávislé nejen s ohledem na četné funkce, ale i na využívání toku, a to jak prostorové (subjekty položené výše a niže na toku), tak i časově (např. staré ekologické zátěže). K tomu přistupuje skutečnost, že vedle vodního hospodářství je dotčena řada dalších oblastí užívání vod s vlastní regulační kompetencí, s nimiž je třeba hledat kompenzační řešení zájmů (konflikty cílů). Společenské, politické a institucionální postupy a nástroje, vytvořené pro účely implementace Rámcové směrnice o vodách, tvoří na tomto komplexním pozadí vhodný rámec pro stano- vení priorit pro odvozené doporučené postupy, uvedené v koncepci pro nakládání se sedimenty, zejména pro jejich realizaci v kontextu správy oblasti povodí. Management sedimentů, o který se usiluje v povodí Labe, se v takové obsahové komplexnosti a prostorovém rozsahu nepodařilo doposud zkonzopovat, či dokonce vyřešit v žádné povratní oblasti povodí. O to důležitější je provést vyhodnocení stávajících zkušeností s managementem sedimentů a získat poznaní o možnostech managementu v praxi. Tato problématicka je pojednána v kapitolách 7.7 a 7.8, kromě toho je v příloze A5 obsažen přehled ověřených možných postupů při nakládání se sedimenty.

Obrázek 3-1 názorně zachycuje hlavní kroky při zpracování koncepce pro nakládání se sedimenty. Tato koncepce byla sestavena na základě niže uvedených předpokladů:

- Je ucelená, tj. kombinuje různé aspekty sedimentů do jedné sjednocené koncepce, a to z hlediska prostorového, funkčního (kvantita, hydromorfo-
logie, kvalita) i z hlediska životního prostředí a využívání vod.

- Týká se celého povodí, tj. zohledňuje souvislosti příčin a následků povodí Labe.
- Je založená na rizikovosti, tj. opírá se o závěry z analýzy rizik, vycházejících z nevyhovujícího stavu sedimentů, která mohou nastat pro režim sedimentů, ekologické funkce, funkčnost ekosystému a využívání vod v závislosti na sedimentech.
- Je zaměřená na realizaci, tj. byla zpracována na podporu implementace Rámcové směrnice o vodách a Rámcové směrnice o strategii pro mořské prostředí, uvádí doporučené postupy ke zlepšení stavu / dosažení cílů a dokladá jejich proveditelnost prostřednictvím souhrnu ověřených řešení při nakládání se sedimenty.

Nejstoty při vypracování a realizaci koncepce pro nakládání se sedimenty mají tři hlavní příčiny.

1. **Stávající deficity** v poznatcích a hodnocení – datové podklady a pochopení procesů nemohou být nikdy a v žádné dílci oblasti vyčerpávající. Zjištěné deficity jsou pojednány v kapitolách 3 až 6 a návrhy potřebných zlepšení ježméně v kapitolách 8 a 9.

2. **Reakce systému Labe na mimorádné situace** – na povodňové fáze za méně než 10 % času může připadat více než 90 % ročních odnose plave-

3. **Ovlivnění hydrologického režimu (ČR) / průměrná změna nadmořské výšky dna / bilance sedimentů (SRN)**

3. **Průchodem pro sedimenty**

4. **Variabilita šifry a variabilita hlubek**

5. **Změnitelné složení dnového substrátu**

6. **Stabilita břehu (ČR) / břehová struktura (SRN)**

7. **Poměr recentní a morfologické nivy / marše**

INDIKÁTOŘ KVANTITY

Indikátor kvantity jsou průtok (Q), koncentrace plaven (Cₖ), a odnos plaven (S₊). Na vnitrozemském úseku Labe jsou tyto indikátor rozhodující pro výběr relevantních přílož kategorie a obecně představují základní veličiny v souvislosti s analýzou rizik na základě aspeků kvality (odhad odnose znečišťujících látě), hydromorfologie a plavby (kap. 4 až 6).

Indikátor kvantity se na vnitrozemském úseku Labe sledují na referenčních vodoměrných stanicích (Q), resp. na referenčních profitech kvantity (Cₖ, S₊). Pro vypracování koncepce pro nakládání se sedimenty byl použit vždy co nejkvalitnější odhad na základě

Obr. 3-1: Přehled koncepce

Kapitol 3.2

Koncepce MKOL pro nakládání se sedimenty

Na české straně jsou kvantitační charakteristiky zjišťované na základě dat pozorování ve vodoměrných stanících a ve stanicích s denním sledováním režimu plavení v rámci hydrologické sítě ČHMÚ. Na německé straně vycházejí kvantitační charakteristiky spolkových vodních cest Labe, Sály a Havoly z dat sítě vodoměrných stanic, resp. z denních průměrů trvalé měření sítě plavení Vodní a plavební správy SRN (WSV). Tyto hodnoty měření jsou podloženy daty monitorování pod spolkovými zemí, pokud jsou tato data k dispozici. V případě zemských vodních toků byla použita co nejlepší datová základna příslušného provozovatele referenčního profilu. Kompletní přehled referenčních vodoměrných stanic, referenčních profilů kvantity, zodpovědných provozovatelů a správacích dat je uveden v **tabulce T-A2-1-1, příloha A2-1**. Nejistoty ve výpovědích ohledně C₉ a S₉ jsou dány přesnosti použitých metod měření a reprezentativnosti zjištěných dat. Podrobnosti k této problematice jsou uvedeny v **příloze A2-2**.

Ve slopovém úseku Labe mají indikátorové kvantity jiný charakter. Důvodem jsou periodické změny směru proudení podmíněné slopovými vlivy a směšováním s mořskými plaveninami / sedimenty unášenými proti proudu s limnickými plaveninami / sedimenty z vnitrozemských úseků Labe. Referenční profil Seemannshöft slouží podle definice k dokumentaci vnosů z Labe do Severního moře. Tento profil se nachází alespoň částečně ve vlivu zákazové zóny estuáru, což vede k zachycení zvýšeného množství plavení / sedimentů při odběrech vzorků. Jelikož ko- ryto Labe je zde již poměrně široké, vyhodnocují se vzorky z příčného profilu. Využívání takto pořízených dat vede k nadhodnocování odnosek převážně partikulárně vázaných znečišťujících látek.

3.3 **Indikátorové kvality a jejich odstupňovaná aplikace**

Podrobné znázornění postupu při výběru indikátorů kvality a odvození klasifikačního přístupu je uveden

Výběr relevantních znečišťujících látek se opírá o přístup prvního plánu povodí (MKOL 2009). Použit bylo dvoustupňové metody. V prvním stupni byly zmapovány všechny potenciálně relevantní látky. Zároveň s tím bylo pro všechny rozhodující předměty ochrany prověřeno, jak jsou citlivé na kontaminaci sedimentů. Všechny tyto látky, u kterých závisí dodržování norem kvality přímo či nepřímo na kvalitě sedimentů, byly vyhodnoceny z hlediska platných ustanovení české a německé legislativy (zákony, vyhlášky, operativní pokyny) a mezinárodních úmluv (OSPAR). Tyto látky jsou perzistentní, toxické, biologicky akumulovatelné a adsorpční. Kvantitativním kritériím je výsoký koeficient rozdělení pevné matrice / voda (logK_{org} > 3,5). Ve druhém stupni byly z tohoto okruhu vybrány ty látky, které jsou na základě jejich prokazatelně zvýšeného vyskytu relevantní pro Labe. Tento výběr byl proveden na základě dat z referenčních profilů na Labi a relevantních přítočích kategorie 1 (viz příloha A2-1**) v letech 2003 – 2008.**

Zpravidla se přítom jedná o látky, pro které byly již v prvním plánu povodí stanoveny požadavky na její snížení. Výstupem této dvoustupňové metody bylo 29 znečišťujících látek, resp. látkových skupin, které byly v kontextu koncepce pro nakládání se sedimenty vyhodnoceny jako relevantní. Jsou uvedeny v **tabulce 3-1**.
Klasifikace plavení a sedimentů je jedním z prvků hodnocení stavu, a tím i analyzy rizik, ale nesmí se s analýzou rizik klást na stejnou úroveň (kap. 6.1). Pro odstupňování aplikací indikátorů v souvislosti s klasifikací sedimentů byla pro každou látku vytvořena dolní a horní prahová hodnota (tab. 3-1). Z toho vyplývají tři třídy:
- podkročení dolní prahové hodnoty (zelená)
- rozmezí mezi dolní a horní prahovou hodnotou (žlutá),
- překročení horní prahové hodnoty (červená).

Dolní prahová hodnota je tvořena z řady požadavků na kvalitu sedimentů pro všechny stejněměrně posuzované předměty ochrany a je v této řadě nejnižší hodnotou ("formálně nejpřísnější požadavek"). Tato hodnota představuje formální limit specifický pro danou znečišťující látku, pod kterým mohou být podle současného stavu poznaní a ustanovení dosaženy všechny environmentální cíle závislé na dobrém stavu sedimentů, a to časově neomezeně a nezávisle na lokalitě. Nejedná se však o předjmání konkrétního operativního cíle.

Horní prahová hodnota je v zásadě definována na základě plných norem environmentální kvality pro znečišťující látky v sedimentech, které byly stanoveny na národní úrovni v rámci implementace Rámcové směrnice o vodách (nařízení vlády č. 23/2011 Sb. – část B, tab. 2, resp. spolková vyhláška o povrchových vodách – OGwV 2011, příloha 5). Oba tyto národní předpisy jsou v kontextu koncepce pro nakládání se sedimenty považovány za rovnocenné. Navázáním se doplňují a nevykazují již pro žádnou ze sledovaných znečišťujících látok konkurenční ustanovení. Pro řadu znečišťujících látok nejsou stanoveny normy environmentální kvality ani v jednom z uvedených národních předpisů. V těchto případech byly horní prahové hodnoty odvozeny základě vyhodnocení odborné literatury (de

Tab. 3-1: Znečišťující látky relevantní pro Labe a prahové hodnoty pro klasifikaci sedimentů

<table>
<thead>
<tr>
<th>Č.</th>
<th>Látka</th>
<th>Jednotka</th>
<th>Dolní prahová hodnota</th>
<th>Horní prahová hodnota</th>
<th>Zdroj HPH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPH</td>
<td>HPH</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Rutu’ (Hg)*</td>
<td>mg/kg</td>
<td>0,15</td>
<td>0,15 – 0,47</td>
<td>0,47</td>
</tr>
<tr>
<td>2</td>
<td>Kadmium (Cd)*</td>
<td>mg/kg</td>
<td>0,22</td>
<td>0,22 – 2,3</td>
<td>2,3</td>
</tr>
<tr>
<td>4</td>
<td>Zinek (Zn)</td>
<td>mg/kg</td>
<td>200</td>
<td>200 – 800</td>
<td>800</td>
</tr>
<tr>
<td>5</td>
<td>Měď (Cu)</td>
<td>mg/kg</td>
<td>14</td>
<td>14 – 160</td>
<td>160</td>
</tr>
<tr>
<td>6</td>
<td>Níčí (Ni)*</td>
<td>mg/kg</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Arsen (As)*</td>
<td>mg/kg</td>
<td>7,9</td>
<td>7,9 – 40</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>Chrom (Cr)</td>
<td>mg/kg</td>
<td>26</td>
<td>26 – 640</td>
<td>640</td>
</tr>
<tr>
<td>9</td>
<td>α-hexachlorociklohexan* (α-HCH)</td>
<td>μg/kg</td>
<td>0,5</td>
<td>0,5 – 1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>10</td>
<td>β-hexachlorociklohexan** (β-HCH)</td>
<td>μg/kg</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>γ-hexachlorociklohexan* (γ-HCH)</td>
<td>μg/kg</td>
<td>0,5</td>
<td>0,5 – 1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>12</td>
<td>p,p′-DDT</td>
<td>μg/kg</td>
<td>1</td>
<td>1 – 3</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>p,p′-DDE</td>
<td>μg/kg</td>
<td>0,31</td>
<td>0,31 – 6,8</td>
<td>6,8</td>
</tr>
<tr>
<td>14</td>
<td>p,p′-DDD</td>
<td>μg/kg</td>
<td>0,06</td>
<td>0,06 – 3,2</td>
<td>3,2</td>
</tr>
<tr>
<td>15</td>
<td>PCB-28</td>
<td>μg/kg</td>
<td>0,04</td>
<td>0,04 – 20</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>PCB-52</td>
<td>μg/kg</td>
<td>0,1</td>
<td>0,1 – 20</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>PCB-101</td>
<td>μg/kg</td>
<td>0,54</td>
<td>0,54 – 20</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>PCB-118</td>
<td>μg/kg</td>
<td>0,43</td>
<td>0,43 – 20</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>PCB-138</td>
<td>μg/kg</td>
<td>1</td>
<td>1 – 20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>PCB-153</td>
<td>μg/kg</td>
<td>1,5</td>
<td>1,5 – 20</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>PCB-180</td>
<td>μg/kg</td>
<td>0,44</td>
<td>0,44 – 20</td>
<td>20</td>
</tr>
<tr>
<td>22</td>
<td>Pentachlorbenzen* (PeCB)</td>
<td>μg/kg</td>
<td>1</td>
<td>1 – 400</td>
<td>400</td>
</tr>
<tr>
<td>23</td>
<td>Hexachlorbenzen* (HCB)</td>
<td>μg/kg</td>
<td>0,0004</td>
<td>0,0004 – 17</td>
<td>17</td>
</tr>
<tr>
<td>24</td>
<td>Benzo(a)pyren* (BaP)</td>
<td>mg/kg</td>
<td>0,01</td>
<td>0,01 – 0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>25</td>
<td>Anthracen*</td>
<td>μg/kg</td>
<td>0,03</td>
<td>0,03 – 0,31</td>
<td>0,31</td>
</tr>
<tr>
<td>26</td>
<td>Fluoranthen*</td>
<td>mg/kg</td>
<td>-</td>
<td>-</td>
<td>0,18</td>
</tr>
<tr>
<td>27</td>
<td>Σ 5 PAU*</td>
<td>μg/kg</td>
<td>0,6</td>
<td>0,6 – 2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>28</td>
<td>Kation tributylcenu* (TBT)</td>
<td>μg/kg</td>
<td>-</td>
<td>-</td>
<td>0,02</td>
</tr>
<tr>
<td>29</td>
<td>Dioxiny / furány*</td>
<td>ng TEQ/kg</td>
<td>5</td>
<td>5 – 20</td>
<td>20</td>
</tr>
</tbody>
</table>

1. HPH je zároveň formální nejplánějším požadavkem, klasifikaci zde nelze provést
2. Sums benzolů, fluorantenu, benzofluoranthenu, benzofluoranthenu, benzochinonu, dyeny (1,2-3-4) pyrenu
3. Látky úrovně praktických předpisů, tj. jejich bezpečnostní dosažení podle stanovení zdrojů (ES 2008b)
Deckere 2011; Evers et al. 1996), resp. za využití nepříznivějších hodnot dle platných národních legislativních předpisů (spolková vyhláška o maximálním množství znečišťujících látek a rezidu pesticidů a insekticidů v potravinách – RHmV 2009; Společná přechodná ustanovení pro nakládání s odtěženými nánosy v pobřežních vodách – GUBAK 2009).

Není jistoty v klasifikaci mohou být způsobeny různými přístupy ke zpracování norem, které jsou v příslušných předpisech sledovány (viz příloha A2-3).

3.4 HYDROMORFOLOGICKÉ INDIKÁTOŘE A JEJICH ODSTUPOVNÁ APLIKACE

Režim sedimentů a morfologie vodních toků spolu úzce souvisejí a navzájem se ovlivňují. Čím přirozenější je režim sedimentů, tím přirozenější cestu se může zpravidla utvářet i bohatost forem vodního toku specifických pro daný typ vodního útvaru. Měně výrazně hydromorfoLOGické charakteristiky fungují jako indikátor narušeného režimu sedimentů. HydromorfoloGické charakteristiky toku mají naopak vliv na formování převládajících sedimentačních poměrů. (Quick et al. 2013; Quick 2012; Rosenzweig et al. 2012).

Výběr indikátorů pro posouzení stavu sedimentů z hlediska hydromorfoloGie (tab. 3-2) byl proveden jednotně s ohledem na požadavky Rámcové směrnice o vodách, včetně souvisejících směrných dokumentů („guidance documents“) a příslušných národních předpisů (zákon 254/2001 Sb., vyhláška č. 98/2011 Sb., spolková vyhláška OGew 2011). Indikátoře jsou aplikovány a klasifikovány na základě platných národních metodických přístupů. Umožňují kompatibilní znázornění a vyhodnocení hydromorfoloGických poměrů v celem povodí, což bylo prokázáno i aplikací obou metod v přeshraničním úseku mezi Děčínem a Drážďany.

Ze šesti zvolených indikátorů odpovídají čtyři hydromorfoloGickým ukazatelům skupiny složek kvality průchoDnosti pro sedimenty a morfologie pro řeky po dle Rámcové směrnice o vodách (ES 2000a). V kontextu managementu sedimentů je hlavní pozornost zaměřena na jedné straně na režim sedimentů, což v tomto smyslu představuje určité omezení v pojednání nadřazeného pojm „hydromorfoloGie“. Na druhé straně bylo provedeno nezbytné rozšíření pomocí obou dalších ukazatelů, tj. „balance sedimentů“ a „poměr recenDní údolní nivy / marše a morfologické údolní nivy a marše“. Hlavní rozdíl u indikátorových ukazatelů na české a německé straně se týká ukazatele „balance sedimentů“. Je to dán odloučeným průtokovým režimem na obou stranách hranič. Zatímco vnitrozemské Labe na německé straně je volně tekoucí řekou, na české straně je z převážně části regulováno vzdutím, přičemž dynamika fluvialních procesů je významně ovlivněna soustavou navazujících zdrojí. Na německé straně je proto aplikován ukazatel „průměrná změna nadmořské výšky dna – balance sedimentů“, naproti tomu na české straně ukazatel „ovlivnění hydrologického režimu“.

Pro hodnocení jednotlivých indikátorů se v české i německé části povodí Labe používá pětistupňový systém. V rámci tohoto systému – v souladu s Rámcovou směrnicí o vodách – odpovídá hodnota „1“ nejlepšímu a „5“ nejhoršímu stupni hodnocení.

<table>
<thead>
<tr>
<th>Indikátové ukazatele</th>
<th>Definice</th>
<th>Obr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovlivnění hydrologického režimu (ČR)</td>
<td>Indikátorový ukazatel ovlivňující hydrologického režimu představuje komplexní parametr, odrážející celkovou míru ovlivnění přirozené dynamiky proudění v korytě toku. Umělé ovlivnění přirozené dynamiky hydrologického režimu se dále promítá do charakteru fluvialních procesů v korytě a údolní nivě a má tak přímý vliv na hodnoty ostatních indikátorových ukazatelů.</td>
<td>5-3 K-A4-3</td>
</tr>
<tr>
<td>Průměrná změna nadmořské výšky dna / bilance sedimentů (SRN)</td>
<td>Průměrná změna nadmořské výšky dna / bilance sedimentů za definované období je mírou pro sedimentační, resp. erozi procesy. Prostřednictvím vývoje režimu sedimentů charakterizuje systém vodního toku za určité časové období jako definitivní, nadměrný nebo vyrovnaný a je směrodatná pro návaznost, resp. přerušení vazby mezi řekou a údolní nivou.</td>
<td>5-3 K-A4-3</td>
</tr>
<tr>
<td>Průchodnost pro sedimenty (ČR/SRN)</td>
<td>Průchodnost pro sedimenty je zásadním způsobem určována stávajícími příčinami překážkami. Jejich účinek jako bariéra má pro transport sedimentů za následku zpětné vzdutí proudu s akumulací sedimentů a směřem do proudu erozi dna říčního koryta. Jako další důsledek se vyskytuje modifikované složení dnového substrátu a změněné povrchy ve strukturové, a to jak nad příčnou překážkou, tak i pod ní.</td>
<td>5-2 K-A4-2</td>
</tr>
<tr>
<td>Změstrostni složení dnového substrátu (ČR/SRN)</td>
<td>Zmístnostní složení dnového substrátu je základní veškerým vzniklým sedimentů, které mají významný vliv na vzhodný charakter habitats pro floru a fauna. Charakteristická je přízněm velikosti zrn. U deficitních říčních systémů s převládající erozi, jako je Labe, dochází tendenčně k hlbokým substrátu, dá se po určitě časovém období vztahovat. Z pohledu dynamiky fluviaelních procesů vytváří diverzita typů substrátu odráží členitost dynamiku proudění a s ní spojenu přirozenou dynamiku fluviaelně morfologických procesů.</td>
<td>K-A4-6</td>
</tr>
<tr>
<td>Stabilita břehu (ČR)</td>
<td>Riziko intenzivní upravovatelnosti břehu se projevuje především vysoké oblasti břehové eroze a omezením výskytu struktury, podporujících přirozenou akumulaci v korytě toku. Intenzivní upravovatelnost břehu tak z pohledu rizikové analýzy představuje důležitý parametr, ovlivňující režim i bilanci sedimentů.</td>
<td>K-A4-7</td>
</tr>
<tr>
<td>Břehová struktura (SRN)</td>
<td>Břehová struktura reprezentuje procentuálně podíl přirozených břehů podél toku. Přirozeno nebo relativně přirozené břehy mohou pro režim sedimentů fungovat jako zdroj a/nebo jako terénní prohlubeň.</td>
<td>K-A4-7</td>
</tr>
<tr>
<td>Poměr recentní a morfologické nivy / marše (ČR/SRN)</td>
<td>Poměr recentní údolní nivy / marše a morfologicky údolní nivy / marše popisuje poměr aktuálně zaplavené plochy k původní zaplavené ploše (holocenní záplavové koryto). Indikátorový ukazatel poměr recentní a morfologické nivy má značný význam z hlediska kontinuity proudění vody i pohybu sedimentů v prostoru údolní nivy a jejich napojení na fluviaelní procesy toku. Negativní vliv intenzivních zásahů do prostoru údolní nivy spočívá především v často výrazném omezení kapacity údolní nivy, využitelné při transformaci vysokých vodních stavů a zároveň pro přirozenou fluviaelní dynamiku vody a její interakci s fluviaelními procesy v korytě toku.</td>
<td>K-A4-8</td>
</tr>
</tbody>
</table>

veličiny a odchylky způsobené lidskou činností klasiﬁkují pomocí strukturálních charakteristik. Tyto charakteristiky jsou v rámci určitého rozpočtu variabilní a jsou podloženy adekvátními kvantitativními hodnotami v závislosti na posuzovaném indikátoru. Podrobný popis je obsažen v příloze A2-4.

Ve slopovém úseku Labe se odstupňovaná aplikace hydromorfoloických indikátorů provádí ve čtyřech třídách se zaměřením na ekologický vzor na základě odborného ohuďu. Na rozdíl od vnitrozemského úseku Labe se třída 1 v silné olivlněním vodním útvaru slapového úseku Labe nevytýje. Klasifikace tedy sahá od třídy 2 „dobrý a lepší (podmíněné přírodní blízký)“, přes třídu 3 „střední (olivlnění)“ a 4 „poškozený (silně olivlnění)“ až po třídu 5 „zničený (umělý / nepřirozený)“. Obsahovým základem je „Integrovaný plán povodí pro estuář Labe“ pracovní skupiny „Estuář Labe“ (IBP 2012). Na rozdíl od hodnocení vnitrozemského úseku se očekává v systématické odchylky, jelikož data byla agregována pro větší úseky (viz příloha A2-5). Jedním z důvodů je, že kvůli šířce toku v estuáru by se při kratších úsecích obrátil poměr šířky a délky. V hydromorfoloickém hodnocení funkcích oblasti jsou rozlišována a hodnocena vždy čtyří jáma, při odchylkách v odnudě mezi jednotlivými jámou je určující třída, které je vyhodnoceno jako nejhorší. Agregace dílčích výsledků k jednotlivé indikátory se neprovádí. Za (1) provozní dráhu je považována „pelagická jáma“ reky. Základem jsou topografické poměry úpravy koryta na 13,5 m n. m. Za (2) pásmo mělké voda se označuje „subhydriční jáma“, tj. oblast hloubky mezi průměrným nízkym stavem vody za odlivu a průměrným nízkym stavem vody za odliv minus dva metry (MTNw až MTNw – 2,0 m). Za (3) pásmo vody se označuje „semiakvatická jáma“, tj. oblast mezi průměrným vysokým stavem vody za přílivu a průměrným nízkým stavem vody za odlivu (MTNw – MTNw). Za (4) předhrází se označuje „semiaquatrická jáma“, tj. výše položené oblasti mezi průměrným vysokým stavem vody a hranou vysokého břehu (geestu), resp. ochranou hráze před bouřlivým přílivem – tedy recentní marš. Za (5) morfologickou (reliktní) marši se označuje oblast, která se nachází v pruždolí Labe a vytvořila se z holocenních říčních nánosů (jílů). Podrobný popis je obsažen v příloze A2-5.

4. Kvantitativní poměry a analýza rizik z hlediska plavby

Kvantitativní poměry mají v kontextu koncepce pro nakládání se sedimenty význam jak pro aspekty hydromorfoloje a kvality (kap. 5 a 6), tak i pro plavbu. V této kapitole jsou popsány kvantitativní poměry z hlediska režimu plavení, které jsou základem pro bilancování relevantních znečišťujících látek v povodí Labe vázajících na sedimenty. Dále jsou zde pojednány hlavní metodické zásadky bilancování sedimentů a takové body, které mají mimořádný význam pro aspekt plavby, resp. poměr hloubek vody, a tudíž i souvisících poměrů dna koryta a dolního omezení plavební dráhy.

4.1 Metodika, datové podklady a nejistoty

V povodí českého úseku Labe jsou pro účely bilancování sedimentů a plavenin dostupná pouze data z monitoringu plavení. Z tohoto důvodu jsou zpracovány výhradně bilance podle spojeného lát- ky – plaveniny, a to na základě dat ze systematického pozorování režimu plavení v působnosti Českého hydrometeorologického ústavu (ČHMÚ 2013). Profily této měřicí sítě jsou ve většině případů shodné s vodoměrnými profily ke sledování průtoků vody a rovněž s profily monitoringu jakosti plavenin a sedimentů. Transport plavenin, který je základem pro další bilancování odnusů, zvláštně vázaných látok, se počítá v denním kroku z dat průměrných denních koncentrací plavenin a průměrných denních průtoků vody.

Okamžité hodnoty koncentrací plavenin i průtoků na regulováném úseku Labe vykazují poměrně velkou variabilitu, jejíž rozsah je olivlnění provozem jezír, plavenin komor, vodních elektráren i lodní dopravy. Režim plavenin má přirozený chod pouze v období mimořádných odkovového stavu, kdy jezíry neplně svou vzdouvací funkci. Během vyhrabaní tabulových jezír při vysokých vodních stavech dochází zároveň k suspendaci plavenin sedimentovaných v jezových zdrojích. Nejistoty vypočtených odnusů plavenin jsou dány jak nejistotami laboratorních stanovení koncentrací plavenin, tak i vyhodnocenými průtoky a hlavně proměnlivostí parametrů v čase (reprzentativnost dne koncentrace plavenin z jednoho odběru). V případě rychlých změn transportu plavenin během jednoho dne mohou být výsledné odnusy podhodnoceny i nadhodnoceny.
Základem bilance sedimentů na německém vnitrozemském úseku Labe jsou měření splavenin a plavenin, která provádí Vodní a plavební správa SRN (WSV). Roční látkové odnosit se vypočítávají pomocí vztahů mezi transportem látek a průtoky (BfG 2013a). Vede výpočtu transportu a látkových odnosů se pro porovnání bilance řešení sedimentů a hodnocení vývoje vodních stavů v podčlánku profilu v rozsahu malých až průměrných průtoků využívají také změny objemu na základě zaměřování dna, prohrádky, přemísťování / ukladání a přidávání splavenin a dále zdroje a místa ukládání sedimentů (vlny z přírodních sedimentace, abraze). Vyhodnocení a závěry použité v této koncepci se opírají o širokou datovou základnu. Bylo snahou, aby se výsledky a jejich souhrn opíraly pokud možno o několik na sobě nezávislých datových souborů, resp. aby se vzájemně zajišťovaly. Výchozí jednotlivá měření, resp. vyhodnocení však obsahují jenžě řadu nejistot, které jsou podrobně pojednány v publikaci BfG (2013a). Korelace transportu dnoových splavenin s průtokem není teoreticky zcela jednoznačná. Lépe odvodněná by byla korelace se smykovým napětím, které se však nedá měřit přímo. Mezi možnostmi korelace byla vybrána mocninná funkce, jelikož takto se v porovnávání s jinými funkcemi získávají nejvyšší korelační koeficienty. Regresní analýza však reaguje zvlášť silně na jednotlivé hodnoty v rozsahu vysokých průtoků, kde je hustota dat přirozeně nejnížší.

Odnosy suspenzní stejně jako odnosit dnoových splavenin nekorelují s průtokem přímo. Nicméně ve vědě je běžné, že se takové korelace sestavují, např. jako mocninná funkce. Prověření výpočtů látkových odnosů z odvozených vztahů mezi transportem látek a průtoky pomocí naměřených látkových odnosů však ukázala, že u velkých průtoků převládá podčerpávání odnosů suspenzní. Velikost podčerpání nelze prozatím kvantifikovat, jelikož počet měření při velkých průtokech je pro tento účel příliš nízký. Možný vliv chyb na bilance sedimentů na základě nejistot ve vztazích mezi transportem látek a průtoky pro transport suspenzní se odhoduje jako nezanedbatelný. Obdobně jako pro transport dnoových splavenin jsou vztahy mezi transportem a průtoky u odnosů suspenzní platné jen po omezené časové období, během něhož jsou základní okrajové podmínky prorovnatelné. Na hodnotu odnosu suspenzní má velký vliv zeměnina množství písku. Pokud se dostupné množství písku zvýší (například v důsledku eroze písčitých vrstev), může se odnos suspenzní nezásadně s průtoku zvýšit. Metoda bilancování sedimentů, která se opírá o vyhodnocení vývoje výšky dna, potřebuje řadu dalších doplňujících předpokladů, čímž se zvýšuje počet možných chybových vlivů. Výsledně lze k analýze nejistot konstatovat, že se toto metodické přesto dá příznačně vyšší spolehlivost, jelikož v metodice měření transportu pevných látek může být identifikován větší počet možných nezanedbatelných chybových zdrojů. Skutečně látkové odnosit se pohybují pravděpodobně mezi bilancií obou metod, jelikož vývoj výšky dna má tendenci látkové odnosit sišši přecenovat, naproti tomu bilance transportu pevných látek má tendenci podceňovat zejména odnos písku.

Ve slopovém úseku Labe provozuje Správa hamburského přístavu (Hamburg Port Authority – HPA) a Vodní a plavební správa SRN (WSV) monitorovací programy zaměřené na různé hydrologické a sedimentologické otázky, které slouží také pro zdokonalování kvantitativních poměrů. Podél slopového úseku Labe existuje v podstatě dokončená měřiči síť, kterou tvoří 18 trvalých měřicích stanic. Cíle měření jsou předmětem dohody mezi HPA a WSV. Vdele transportu a režimu sedimentů se věnuje pozornost i dalším významným otázkám (např. zajištění důkazů za záměry ke stavebním úpravám toku, využití dat měření pro nautické účely, vyhodnocení polohy pásma brakických vod apod.). Data měřicích stanic mají sloužit k dlouhodobému dokumentování vývoje obchodu plavenin (vývoj zóny zákalu, dopady projektů stavebních úprav toku a strategie přemísťování odtěžených nánosů, změny klimatu) a jeho (sezónálních) proměn. Měření by měla přispět k lepsšímu pochopení procesů a systému, zejména procesů transportu sedimentů, a tím umožnit optimalizaci managementu sedimentů ve slopovém úseku Labe.

4.2 KVANTITATIVNÍ POMĚRY NA VNIITROZEMSKÉM ÚSEKU LABE

Kvantitativní poměry režimu plavenin v Labi se sledují pomocí postupů a metod popsaných v kapitole 4.1 a příloze A2-2. Výsledky v hodnoceném období 2003 – 2008 představují konzistentní datovou základnu pro odchody vztázené na celé povodí. **Obrázek 4-1** znázorňuje vývoj ročních odnosit plavenin v podélém profilu Labe.

Roční odnosi plavenin v referenčních profitech na českém úseku Labe dokumentují v hodnoceném období rozdíly v transportovaném množství plavenin jak v závislosti na odtokových poměrech (čas), tak v podélém profilu. Nejčastěji je v jednotlivých letech sledovaného období vyhodnocen deficit množství transportovaného materiálu řádově v tiscích až de-
setitíících tun ve stanících na homní regulova- ném úseku středního Labe (Němčice – Valy), příp. také (v průtoku podprůměrných letech) v úse- ku Lysá n. L. – Obříství. Záporná diference v od- nosech byla zaznamenána rovněž v úseku Labe pod zaústěním Vltavy a Děčína. Například v období od března do května 2006 zde sedimentovalo odhadem 150 000 t suspendovaných látek. Profilem Obříství je ze středního úseku Labe transportováno průměrně 100 000 t plavení ročně. Podobně množství plave- nin, okolo 90 000 t/rok, přináší do Labe také Vltava (dlouhodobě nízké koncentrace plavení při celkově vyšších průtocích vzhledem k Obříství). Poměrně nízké jsou vnosy plavení z Ohře (16 000 t/rok) a Bíliny (6 000 t/rok). Na základě průměrných hodnot období 2003 – 2008 lze celkově v podobném profilu českého úseku Labe vyhodnotit postupný vzestup odnosů plavení. V profilu Dolní Žleb dosahuje roční odnos plavení na základě výsledků měření na české straně průměrně přes 200 000 t. Na základě výsledků měření v profilu Pírna na německé straně se vno- sy z českého do německého úseku Labe pohybují v průměru kolem 250 000 t/rok. Vzhledem k prosto- rově vzdálenosti mezi českým a německým příkopem v blízkosti státních hranic a inherentních nejistot mě- ření je to velmi dobrá shoda. V průběhu roku se odno- sy plavení zvýšují v průměru téměř o 400 000 t/rok, takže se dá počítat s tím, že odnosy plavení, kte- ré přicházejí z vnitrozemského do slapového úse- ku Labe, činí kolem 650 000 t/rok. Vnosy plavení ze Sály se pohybují kolem 130 000 t/rok, Mulde a Havola přinášejí po 30 000 t/rok, což výraznou měrou přispívá k nárůstu množství. Na dílčích úsecích je možné se setkat s poklesy odnosů v rozsahu až 10%. To se pohybuje v rozsahu kolísání a nelze z toho činit žádné zaručené závěry o sedimentacích. Na celém německém vnitrozemském úseku Labe (~ 600 km) lze zaznamenat v podstatě stabilní vzestup odnosů plavení s vysokou úměrností k rostoucím průtokům. Koncentrace plavení jsou přehledně znázorněny v příloze A4 (mapa K-A4-1).

Volně tekoucí vnitrozemský úsek Labe mezi Ústím nad Labem, státními hranicí ČR s Německem a dále až zhruba do km 75 na německé straně má sta- bilitní skalnaté dno. Průzkumy vývoje dna na následu- jícím německém vnitrozemském úseku Labe ukazu- jí, že od konce 19. století přesahuje zahlušování dna převážně požadovanou míru. V období 1880 – 1900 se průměrná výška dna v regionálně rozdílné míře zahulobila až o 2 m (u Torgau, ř. km 155). Z toho byla odvozena maximální roční míra erozních procesů ve výši 1,7 cm/rok, což bylo v lokálních úsecích výrazně překročeno, v průběhu let však také vystřídalo stagr- nujícím nebo protichudýným vývojem. Ze zaměřování dna koryta a měření transportu splavenin lze pro ně- mecký úsek Labe odvodit míru erozních procesů o různé intenzitě. V průměru se hodnoty pohybují v roz- sahu 1,0 až 1,25 cm/rok. Tato tendence zahlušování přetrvala v celém tvoření, tj. velkoplošného i dlouhodobé- ho hlediska. To ovšem nevylučuje, že některé delší úseky tedy vykazují téměř stabilní stav (ř. km 0 až 75 a ř. km 370 až 500). Stěžejní oblast erozního režimu se v uplynulých desetiletích posunula do úseku pod sou- tokem s Černým Halštromem (Schwarze Elster). Deficit sedimentů dosahuje na celém německém vnitrozem- ském úseku Labe rádově 0,45 mil. t/rok. V částech erozního úseku od ř. km 140 do ř. km 290 jsou zazna- menány průměrné rychlosti eroze až 2 cm/rok. K erozi na několika úsecích značnou měrou přispěla extrémní povodeň v roce 2002 (i v roce 2006), která se jakožto ojedinělý událost výrazným způsobem podílela i na přetváření dna. Podíl poklesu vodní hladiny, který lze přičíst hlubové erozi, nevede na dlouhých erozních úsecích téměř k žádným změnám průměrně se vysky- tujících hlubek, jelikož vodní hladina zpravidla klesá zároveň se dnem toku.

4.3 KVANTITATIVNÍ POMĚRY VE SLAPOVÉM ÚSEKU LABE

Pevně látky jsou do slapového úseku Labe přinášeny nejen z výše položených úseků toku přes jez Geest- hacht, ale i spolu s přílivem ze Severního moře. Vnosy z moře se dosud nepodařilo kvantifikovat. Určitým indikátorem je však množství odtěžovaných nánosů (víz niže).

V Severním moři dochází souběžně s pobřežím ve vodním sloupci směrem od severu k výraz- němu transportu pevných látek, které jsou v kon- taktu s přímořskými mělčinami (watty) a estuáry (Kappenberg and Fanger, 2007). Estuar Labe a zejmé- na úsek jeho ústí podléhají neustáleho přírozeným hydromorfológyzm změnám, při nichž může být mobilizováno značné množství sedimentů. V oblasti nálezového ústí začínají na severovýchodní straně plavební dráhy rozlehlé, morfodynamicky velmi aktivní plochy přímořských mělčín – watty, na kterých se v zónách se zklidněním proudění a chráněných před vlněním moře mohou přechodně nebo i trvale usazovat jemnější sedimenty. V případě bouří může docházet k resuspenzi nánosů jemného materiálu a k vnosu tohoto materiálu do slapového úseku Labe. Podíl jemného písku, který se na mořským pouděm dostává do oblasti watty, zde podléhá plošné roz- sáhlým morfodynamickým procesům.
Datenquellen Zdroje údajů

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Niederöder</td>
<td>Elbe</td>
<td>23 117</td>
<td>53 168</td>
<td>56 429</td>
<td>41,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elbe</td>
<td>Elbe</td>
<td>27 846</td>
<td>98 746</td>
<td>51 661</td>
<td>33,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Łeba</td>
<td>Elbe</td>
<td>20 793</td>
<td>114 374</td>
<td>66 911</td>
<td>46,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obertaunus</td>
<td>Elbe</td>
<td>22 138</td>
<td>227 391</td>
<td>56 400</td>
<td>39,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drobný Děn</td>
<td>Elbe</td>
<td>22 996</td>
<td>240 491</td>
<td>234 378</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trubeck</td>
<td>Donau</td>
<td>6 265</td>
<td>22 026</td>
<td>16 987</td>
<td>15,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tafel</td>
<td>Donau</td>
<td>12 193</td>
<td>47 008</td>
<td>28 400</td>
<td>23,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vranov</td>
<td>Vltava (Mohyla)</td>
<td>28 423</td>
<td>214 085</td>
<td>86 225</td>
<td>64,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schöna</td>
<td>Saale</td>
<td>12 696</td>
<td>71 432</td>
<td>46 561</td>
<td>34,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuruppin</td>
<td>Saale</td>
<td>5 865</td>
<td>67 630</td>
<td>15 477</td>
<td>10,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uhl</td>
<td>Saale</td>
<td>2 334</td>
<td>7 340</td>
<td>6 015</td>
<td>6,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Písek</td>
<td>Elbe (Labe)</td>
<td>127 847</td>
<td>708 392</td>
<td>282 943</td>
<td>228,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tongeren</td>
<td>Elbe (Labe)</td>
<td>197 228</td>
<td>721 229</td>
<td>380 635</td>
<td>319</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vennberg</td>
<td>Elbe (Labe)</td>
<td>187 242</td>
<td>612 112</td>
<td>219 417</td>
<td>174,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allen</td>
<td>Elbe (Labe)</td>
<td>254 112</td>
<td>800 692</td>
<td>305 711</td>
<td>241</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baden</td>
<td>Elbe (Labe)</td>
<td>252 287</td>
<td>685 725</td>
<td>405 224</td>
<td>345</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tongerscheider</td>
<td>Elbe (Labe)</td>
<td>386 168</td>
<td>676 585</td>
<td>518 146</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Völklingen</td>
<td>Elbe (Labe)</td>
<td>455 444</td>
<td>749 776</td>
<td>605 640</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grenzfeld</td>
<td>Schwarze Elster</td>
<td>2 284</td>
<td>4 892</td>
<td>3 358</td>
<td>25,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dresen</td>
<td>Mittel</td>
<td>15 871</td>
<td>45 964</td>
<td>36 876</td>
<td>45,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dippoldiswalde</td>
<td>Saale</td>
<td>83 078</td>
<td>217 246</td>
<td>127 822</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rathenow</td>
<td>Havel</td>
<td>20 018</td>
<td>61 559</td>
<td>26 869</td>
<td>28,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halberstadt</td>
<td>Havel</td>
<td>18 638</td>
<td>60 295</td>
<td>32</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittel</td>
<td>Mittel</td>
<td>6 285</td>
<td>11 129</td>
<td>9 411</td>
<td>6,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitt. Altmark, Neustrelitz</td>
<td>Altmark</td>
<td>9 523</td>
<td>23 143</td>
<td>14 426</td>
<td>10,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elbland, Schlesiens</td>
<td>Schlesiens</td>
<td>8 858</td>
<td>17 477</td>
<td>66</td>
<td>3,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOC</td>
<td>Schlesiens</td>
<td>424</td>
<td>7 898</td>
<td>4 129</td>
<td>35,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legenda

- Grenze der FGE
- Städte
- Staatsgrenzen
- mittl. Fracht [t/a]
- Grenzen freß- und Elbe

Průměrné roční odnosit plavení v povodí Labe (2003 - 2008)

Obr. 4-1: Průměrné roční odnosit plavení v povodí Labe (2003 – 2008)
Slapový úsek Labe přetváří člověk již po celá staletí výrazným způsobem pomoci opatření na ochranu před povodněmi a bouřlivými přílivy, ale i prostřednictvím úprav koryta pro plavební účely. Důsledkem pro režim sedimentů je mimo jiné skutečnost, že kvůli ohrázoval toku prakticky zmizely recentní marše, kde docházelo k ukládání jemných sedimentů.

Vnosy ze Severního moře a z vnitrozemí se v estuáři míší a vytvářejí mimo jiné na úseku ř. km 650 až 700 tzv. zákalovou zónu s koncentracemi plaveční kolem 300 mg/l a více. V zákalové zóně se za delší časové období nacházejí nadměrné množství plavenin. Množství v rozsahu zákalového maxima činí cca 80 000 – 100 000 t, což odpovídá přibližně 15 % ročního vznosu z povodí (Kappenberger a Fanger, 2007). Transport pevných látek je stejně jako prostorové rozložení množství jemného materiálu ve slapovém úseku Labe je určovány přílivem a odlivem a do značné míry také odtokem vody z horní části povodí. Rozdílné zrnitostní frakce (jil, bahno, písek a štěrkl) vykazují různé materiálové vlastnosti a různou rychlost klesání a podléhají rozdílným transportním procesům. Proto je nutné posuzovat jevy transportu pevných látek diferencovány.

Oblast ústí toku je charakterizována převažně hrubým materiálem, který se odstraňuje z plavebních dráží pravidelnými prohrábky. Zatímco písky se pohybují u dna koryta převažně jako plaveniny, probíhá transport jemného materiálu převažně v suspenzi ve vodním slopu. K transportu jemného materiálu dochází reziduálně převažně proti proudu. Delší dobu tvrací malé průtoky z horní části povodí zesíluji transport látek směřující proti proudu, který je vyvolán slapovými vlivy (tzv. “tidal pumping”) a přínáší jemný materiál z pásma brackých vod proti proudu až do hamburského přístavu. To vede k posunu zákalové zóny proti proudu a ke zvýšené míře sedimenů v úsech prohrábek. V případě velkých průtoků se naopak zákalová zóna posouvá případně až delší dobu k Severnímu moři s tím, že dochází k významnému odplavování pevných látek z estuáře do Severního moře.

Jemné sedimenty se ukládají především ve stěžejních místech prohrábek v oblasti Hamburku (Köhlerbrand, jižní rameno Labe – Süderelbe, úseky přístavních bazénů se zklidněným prouděním), směrem po proudu v úseku Wedel/Juelssand, na příjezdu do Severomořsko-baltického průplavu (NOK) a kolem majáku Osterliff. Pokračující se setrvávající tendenci zanášení toku lze dále pozorovat stranou od plavební dráhy, na několika místech v postranních a mělkých úsecích podél toku a v některých vedlejších ramenech labského estuáře. Tento vývoj se neprojevuje na všech úsecích, takže celkový výsledný morfodynamický obraz se ukazuje jako velmi rozdílný.

Transport jemných mořských sedimentů směrem proti proudu se v minulosti výrazně zvyšil. Jako hrušky orientační hodnoty vypočítali Ackermann a Schubert (2007), že v jednom z hlavních stěžejních bodů prohrábek před Wedelem činí podíl mořských plavenin, pocházejících z Německého zálivu, v závislosti na množství vody z horních částí povodí 50 % až 80 %. Výše po toku Labe, nad hamburským přístavem v měřicí stanici Buntsbuch (ř. km 610) dosahuje podíl tohoto mořského materiálu už jen 10 % až 40 % (BfG 2008). Komplexní kvantitativní poměry slapového úseku Labe se projevují velkým a kolísajícím množstvím odtěžovaných nánosů. V posledních letech se v oblasti Hamburku těži v vztahu k jemným sedimentům přibližně 2,5násobek průměrného množství vznosů, přínášených z vnitrozemského do slapového úseku Labe, tj. cca 650 000 tun sušiny.

4.4 ANALÝZA RIZIK Z HLEDISKA PLAVBY

Analýza rizik z hlediska plavby spočívá v porovnání pomerů, které se v řece skutečně vyskytují, s požadovanými hloubkami a šířkami vody, které jsou pro plavbu stanoveny jako cíl údržby.

Český úsek Labe od Přelouče (ř. km 949,1) po česko-německé státní hranice (ř. km 726,6) je dopravně významnou využívanou vodní cestou. Od Přelouče (ř. km 949,1) po soutok s Vltavou (ř. km 837,165) patří Labe do kategorie vodní cesty IV a od tohoto soutoku po česko-německé státní hranice do kategorie V. Charakteristickým rysem vodní cesty v úseku od Přelouče po Ústí nad Labem je kaskáda plavebních stupňů (*obr. 4-2*), které zaručují poměrně stabilní stav vodní hladiny, resp. plavebních hloubek. V úseku dolního Labe (Ústí nad Labem – Mělník) jsou garantovány minimální porony 2 – 2,2 m (v závislosti na hydrologické situaci) a v úseku středního Labe (Mělník – Přelouč) 2,1 m. Cílem údržby je zachování garantovaných parametrů plavební dráhy; zejména pak v úsecech se zvýšeným rizikem ukládání sedimentů, tedy v místech se sníženou rychlostí proudění, jako jsou jezové zdrži, reždy plavebních komor apod.]

V úseku Ústí nad Labem – státní hranice s Německem se jedná o řešení upravené mohou pomoci výhonů, resp. jejich charakter je obdobný německému
úseku Schöna – Drážďany. Cílem údržby je udržování parametrů plavební dráhy dané od početí ponoru od zajištěného vodního stavu na vodočtu Ústí nad Labem. Omezující faktorem pro plavbu v tomto úseku je významné kolísání hladiny během roku a s tím spojených plavebních hloubek. V závislosti na aktuálních hydrologických podmínkách se plavební hloubky pohybují v rozsahu od méně než 1 m do 2,8 m. Problematická je zejména situace za nízkých vodních stavů, kdy dochází k zastavení plavby. Pro zajištění alespoň vyrovnaných průtoků během týdne a případné nadlesení vodního stavu se omezené využívá objem manipulačního prostoru zhruba Střekov (cca 3 mil. m³).

Německý vnitrzemský úsek Labe je spolkovou vodní cestou, která je zaměřena na dopravu jako takovou. Za tímto účelem musí být Labe udržováno ve stavu odpovídajícímu jeho určení. Současný cíl údržby v oblasti nízkých vodních stavů spočívá v zabezpečení hloubky plavební dráhy 1,60 m v šířce plavební dráhy 50 m v průměru během 345 dní v roce s omezením na určitých úsecích (Schöna – Drážďany hloubka plavební dráhy 1,50 m, zčásti omezení šířky). Regulační systém má zůstat účinný až do střední vody a umožnit porovnatelné poměry plavební dráhy. Při vyšších průtocích se již o další regulační efekty neusiluje. Za tímto účelem je třeba udržovat stávající regulační systém jako pasivní opatření managementu sedimentů zaměřeného na lodní dopravu. Výška hladiny je třeba podpořit a zároveň zabezpečit stabilní průměrný stav dna toku. V případě potřeby k tomu přistupuje v jednotlivých částech řek volně na podzemní se sedimenty a splavování. Po velkých povodních, přetvářejících říční koryto, se může ukázat, že je nezbytné takto postupovat po celé délce toku.

V souvislosti s dodržením požadovaných dostupných
plavebních poměrů na vnitrozemském úseku Labe existují v kontextu managementu sedimentů aktuálně následující rizika:

- Vliv na stabilitu vodních děl a funkčnost regulačních staveb při povodňových průtocích v důsledku významného chodu splavenin. Po povodní se tyto sedimenty vzniklé vlivem zvýšených průtoků odstraňují, nelze však zahmout do běžné údržby vodní cesty, kdy jsou zajišťovány parametry plavební dráhy.

- Zaklesnutí vodní hladiny a s tím spojené zhoršení plavebních parametrů vodní cesty na českém úseku regulovaného Labe v důsledku nedostatečného odstraňování sedimentů.

- Obecně deficitní údržba regulačních vodních staveb a nemodifikované regulační parametry. Například stávající výhony na německém úseku Labe nejsou uzpůsobeny na současnou úroveň střední vody, takže tyto stavby nemohou svou regulační funkci na určitých dílčích úsecích uspořádáním způsobem plnit nebo jejich funkce tento stanovený regulační rozsah překračuje.

- Usazování nánosů v plavební dráze německého vnitrozemského úseku Labe jako překážka pro plavbu. Stěžejním úseckem s vysokou prioritou představuje v tomto směru úsek Labe mezi ř. km 508 a ř. km 521. V důsledku nedokončené regulace malých vodních stavů v tomto úseku toku (tzv. „zbýtkový úsek Labe“) a s tím souvisejícím rozšířování příčného profilu koryta se zde tvoří neustále překážky v plavební dráze formou pohyblivých písečných lavic pod hladinou. Potřebné hloubky pro plavbu omezuje ukládání sedimentů v oblasti plavební dráhy. Zároveň v toku dochází k pravidelným změnám trasy plavební dráhy s maximálními potřebnými hloubkami. Trvalé přemísťování plavenin je tedy nezbytné.

- Na dlouhých úsecích Labe má pokračující zahublování dna dopad na plavební poměry a bezpečnost stavebních děl regulačního systému, viz kap. 4.2.

- Pro zachování, resp. obnovu definovaných poměrů plavební dráhy je třeba především v úsecích vodní cesty se zklidněným prouděním, jako jsou např. rejdy plavebních komor nebo v ochranách, bezpečnostních a provozních přístavech, odtěžovat ty jemné sedimenty, které kvůli zatížení znečišťujícími látkami nelze ponechat v toku. To se týká například úseku Sály regulovaného vzdutím.

Slapový úsek Labe je od hamburského přístavu směrem do Severního moře námořní cestou vybudoval Jen plavby. Hlavním cílem z hlediska námořní dopravy je trvalé zabezpečení povolených a požadovaných hloubek vody. Tyto hloubky vody jsou v dílčích úsecích rozdělené, což platí zejména pro areál přístavu. Množství nánosů, které se ročně odtěžuje pro účely plavby ve slavopvém úseku Labe, se pohybuje řádově kolem 15 – 20 mil. m³, což není pro porovnatelné estuáry v oblasti Severního moře nic neobvyklého.

Obrázek 4-3 poskytuje přehled o hlavních oblastech odtěžování nánosů pro údržbu požadovaných hloubek vody. Pokud jde o tvorbu nedostatečných hloubek v dílčích úsecích plavební dráhy a v přístavních bazénech, lze je rozlišit jako přesně ukládání jemných sedimentů a postranná náplavy písečného materiálu (především jemného písku) na jedné straně a na druhé straně jako lokálně nedostatečné hloubky, které vznikají v plavební dráze v důsledku rýn / dun ze střední hrubého a hrubého písku. Zabezpečení hloubek si vyžaduje komplexní, ucelenou strategii pro nakládání se sedimenty. Vzhledem k narůstajícímu množství sedimentů v homů části estuáru zpracovala Správa hamburského přístavu Hamburg Port Authority (HPA) a Vodní a plavební správa SRN (WSV) v roce 2008 „Koncepci pro úpravu toku a nakládání se sedimenty ve slavopvém úseku Labe“ (HPA a WSV 2008). V souvislosti s dodržením požadovaných hloubek existují v kontextu managementu sedimentů aktuálně následující rizika:

- Lokální písečné nedostatečné hloubky představují v jednotlivých úsecích plavební dráhy ve vnitřním estuáru nautický problém (Entelmann a Gätje 2012).

- Postranní náplavy písků mají význam především pro údržbu plavební dráhy v úseku tzv. vnějšího Labe (tj. pokračování plavební dráhy z estuáru přes přímořské mělčiny).

Jako specifická výzva v oblasti Hamburgu se ukazuje přibližně od roku 2000 zvyšené množství jemných sedimentů a jejich zatížení znečišťujícími látkami. Tato problematica předpokládá úpravu strategie umístování sedimentů, která zohledňuje a zvažuje vzájemné působení hydromorfologických, ekologických a ekonomických aspektů. To významné ve společenské akceptací brzkou minimalizaci zatížení sedimentů znečišťujícími látkami. Trvalá nákladná likvidace zatížených sedimentů na souši je také z ekonomického hlediska těžko zdůvodnitelná a praktickým důvodem je ani již dále suťovat. Vzhledem k příčinám zatížení znečišťujícími látkami lze tento úkol řešit pouze v rámci celého společenství Labe.
5. ANALÝZA RIZIK Z HYDROMORFOLOGICKÉHO HLEDISKA

Na české straně byly v rámci pilotního mapování provedeny analýzy na celém pěti sekci toku v celkové délce 119 km. Výběr sekcí pro hodnocení byl volen s ohledem na reprezentativnost vzhledem ke velikosti toku, fyzičko-geografickým podmínkám a charakteru využití prostoru údolní nivy a antropogenních úprav koryta toku. Dalším výběrovým kritériem bylo prověření kompatibility hodnocení v České republice a v Německu. Mapování a hodnocení pokrylo na české straně následující sekce toku: I. hraniční úsek Labe mezi Děčínem a státními hranicemi s Německem, II. dolní Labe mezi Lovosicemi a Roudnicí nad Labem, III. střední Labe v oblasti mezi Kolínem a Nymburkem, IV. střední Labe v oblasti mezi Pardubicemi a Chvaleticemi a V. horní Labe v úseku mezi Jaroměří a hrází vodního díla Les Království.

Na německé straně byly na vitrozemském úseku Labe provedeny analýzy na celých 586 říčních kilometrech od česko-německých hranic (ř. km 0) až po jez Geesthacht (ř. km 586). Úseky zaústění přítoků kategorie 1 byly zohledněny v celkové délce cca 95 říčních kilometrů, a to vždy od soutoku s Labem až po první příčnou překážku. Hodnocený úsek na Černém Halštrotu (Schwarze Elster) tudiž zahrnoval 30 km až k obci Arnsneta, na řece Mulde 8 km až po jez v Dessau, na Sále (Saale) 19,8 km až po první zdymadlo u Calbe a na Havale (Havel) 37,5 km až k plavební komoře Garz. Ve slapovém úseku Labe byly analýzy provedeny od jezu Geesthacht po ústí do Severního moře (ř. km 585,9 – 727,0) v šesti funkčních oblastech (viz příloha A2-5).

5.1 METODIKA, DATOVÉ PODKLADY A NEJISTOTY

Indikátory ke zdokumentování a hodnocení režimu sedimentů jako součásti hydromorfologického stavu Labe a jejich odstupňovaná aplikace byly popsány v kapitole 3.4. V souvislosti s analýzou hydromorfologických rizik je dosaženo propojení mezi zdokumentovaným a hodnocením režimu sedimentů jako součásti hydromorfologického stavu a odvo-
zením doporučených postupů ke zlepšení hydromorfoložického stavu. U každého jednotlivého indikátorového ukazatele se provádí evaluace pomocí pětístučnového klasifikačního systému, jejíž výsledky se jednotlivě promítají i do analýzy rizik. Agregace hodnot se neprovádí. Třídy 1 a 2 ukazují, že převládají již velmi dobré až dobré hydromorfologické a sedimentologické poměry. Zařazení do tříd 3, 4 a 5 poukazuje na ty oblasti, na které se zaměřují doporučené postupy ke zlepšení režimu sedimentů a hydromorfologických poměrů.

Zvláštní význam v kontextu managementu sedimentů pro odvození doporučených postupů mají indikátorové ukazatele průchodnost pro sedimenty a průměrná změna nadmořské výšky dna – bilance sedimentů (na německé straně) a obtížnost hydrologického režimu (na české straně). Tyto ukazatele mají pro režim sedimentů specifickou indikaci, a tím i klíčovou funkci. Chybějící průchodnost pro sedimenty a nedostatek sedimentů se negativně projevuje i u dalších hydromorfologických indikátorových ukazatelů. Tyto hlavní indikátorové ukazatele se promítají v prvním kroku do odvození doporučených postupů. Ve druhém kroku se pro další hydromorfologické indikátorové ukazatele provádí, jaké synergie vzniknu v kombinaci s krokem 1 a zda je nutné vyslovit specifická doporučení. Zdokumentování a vyhodnocení hydromorfologických indikátorových ukazatelů se provádí vždy za využití nejlepších dostupných datových podkladů. Postup při analýze rizik – aspekt hydromorfologie, který je aplikován na cílem vnitrozemském úseku Labe, je schematicky znázorněn na obrázku 5-1. Specifika pro český a německý vnitrozemský úsek Labe jsou stručně popsána níže. Další podrobnosti jsou obsaženy v příloze A2-4 (vnitrozemský úsek Labe) a A2-5 (slapový úsek Labe).

Na české části toku Labe bylo provedeno terénní mapování vybraných hydromorfologických charakteristik. Toto mapování bylo v jednotlivých případech doplněno nebo zpřesněno na základě využití již zpracovaných mapových podkladů a případně dalších distančních podkladů. Struktura hodnocených ukazatelů je kompatibilní s metodikou hydromorfologického monitoringu HEM (Langhammer 2008), a umožňuje tak využívat data standardního monitoringu hydromorfologie. Hodnocení je prováděno na délkově proměnlivých úsecích, vymezených podle homogeneity hydromorfologických charakteristik, což umožňuje odlišení a identifikaci jednak přírodně blízkých a jednak kritických (přírodě vzdálených) prvků.

Pro indikátorové parametry hydromorfologického stavu břehu a údolní nivy probíhá hodnocení pro právě i levý břeh odděleně. Výsledný hydromorfologický stav pak u těchto parametrů představuje vždy méně příznivou hodnotu břehu. Vyhodnocení výsledků probíhá na základě metaboliky HEM-S (Langhammer 2013). Hodnocení má kvantitativní charakter, kdy pro jednotlivé indikátorové ukazatele jsou definována hodnotící schémata, která výslednou klasifikaci daného ukazatele vyjadřuje v pětístučnové škále.

Na německé vnitrozemské části toku bylo modelové zpracováno provedeno pomocí modulu Valmorp integrovaného modelu údolní nivy INFORM¹ Spolkového ústavu hydrologického (BFG 2011a; BCE a Conterra 2010), který umožňuje kvantitativní zdochování a vyhodnocení hydromorfologických ukazatelů (viz také příloha A2-4). Vyhodnocení se provádí pomocí výpočetních vzorců pro jednotlivé ukazatele prostřednictvím modulu Valmorp a na základě použitých metod podle specifiky ukazatelů. Pro klasifikaci bylo na základě odborného vymezení vytvořeno pro každý ukazatel kvantitativní rozpočtě tříd hodnocení a jednoznačné kvantitativní „prahové hodnoty“ jako hranice mezi jednotlivými třídami. K tomu bylo provedeno podrobné vyhodnocení zjištěných dat k hydromorfologii vnitrozemského úseku Labe a relevantních příloh kategorie 1. Výsledky na německém vnitrozemském úseku byly pro každý indikátorový ukazatel samostatně agregovány po 5km úsecích a na každém mapovaném úseku znázorněny v barevných páscech. Souhrom znázornění výsledků pro několik indikátorů najdou usnadnění identifikaci zvlášť kritických úseků (Rosenzweig et al. 2012). Grafické znázornění je uvedeno na obrázku B-A4-1 v příloze A4. V případě potřeby mohou být pro odvození doporučených postupů nebo při nejjasnějších použity i výsledky v detailnějším rozlišení po 1 km. Podrobná dokumentace metod, použitých dat a zásad hodnocení (Rosenzweig et al. 2012, Quick 2012, Quick et al. 2012, König et al. 2012; BCE 2012) zaručuje vysledovatelnost výsledků hodnocení. Pro každý indikátor se používá vždy nejlepší dostupná datová základna. Vzhledem k tomu, že spojovaní různých zdrojů pro jeden indikátorový ukazatel v podélném profilu roku v sobě zpravidla skrývá velké nejistoty a zdroje chyb, byly použity jen takové datové základny, které se vztahují na celý vnitrozemský úsek Labe. Výběr dat a postup jsou uvedeny v kontextu národních a mezinárodních le-

¹ INFORM = Integrated Floodplain Response Model (BCE und Conterra 2010; BFG 2011a)

Slapový úsek Labe byl vymezen jako silně ovlivněný vodní útvar (HMWB), pro který platí upravené environmentální cíle (= dobý ekologický potenciál). Zmapování a hodnocení hydromorfologického stavu slapového úseku Labe se provádí v kontextu koncepce pro nakládání se sedimenty, jak je popsáno v kapitole 3.4, se zaměřením na ekologický vzor na základě odborného odhadu. Indikátorové ukazatele jsou posuzovány z kvalitativního hlediska. Jako základ hodnocení slouží rozdělení slapového úseku Labe na funkční oblasti (viz také příloha A2-5) v rámci „Integrovaného plánu povodí pro estuář Labe“ (IBP 2012), který obsahuje cíle soustavy NATURA 2000 (ES 2000b), a tím i stav pro porovnání ekologického vzoru jako základu pro hodnocení. Podle Rámcové směrnice o vodách (ES 2000a) a spolkové vyhlášky o povrchových vodách (OGeW 2011) se pro silně ovlivněné vodní útvary předpokládají nížší environmentální cíle a z nich vycházejí stupně hodnocení.

5.2 HYDROMORFOLOGICKÉ POMĚRY VNIKROZEMSKÉHO ÚSEKU LABE A ZAÚSTĚNÍ JEHO HLAVNÍCH PŘÍTOKŮ

Na obrázcích 5-2 a 5-3 jsou znázorněny výsledky hodnocení klíčových kritérií „průchodnost pro sedimenty“ a „průměrná změna nadmořské výšky dna – bilance sedimentů“ (D), resp. „ovlivnění hydrologického vývoje..."
Pilotní hodnocení hydromorfolotických poměrů na vybraných úsecích české části toku Labe bylo zaměřeno jednak na kalibraci mechanismu hodnocení i na jeho harmonizaci s německým postupem. Na druhé straně zdůrazňují již tyto pilotní výsledky mimořádnou roli klíčových faktorů hydrologický režim a průchodnost na hydromorfoloický stav toku Labe a dynamiku jeho fluvijálních procesů. Rozhodující pro hydrologický režim i transport sedimentů je kontinuita toku v podélném profilu. Vysoká četnost jezů na středním toku i značný dosah jejich vzdutí představuje jeden z klíčových faktorů pro dynamiku fluvijálních procesů, jehož vliv se odráží v nepříznivém hodnocení v jednotlivých mapovaných sekcích. Na středním toku českého Labe, kde na sebe jednotlivé jezovy navzájem navazují, je v mapovaných sekcích pouze malá část délky toku bezprostředně neoliviněna dosahem vysokých jezů. Druhým fakto rem, který ovlivňuje výsledné hodnocení hydromorfoloického stavu, je zpětná vazba mezi úsekem a na středním toku českého Labe, jsou historické úpravy trasy toku, které se dále promítají do intenzivních zásahů do koryta toku. Historické napřímení toku a související úpravy koryta dlouhodobě snižují hydromorfoloickou kvalitu i v úsecích, kde se např. nacházejí cenné přírodní biotopy lužního lesa a ve kterých je předpoklad pro přirozenou dynamiku fluvijálních procesů i zachování interakce mezi údolní nivou a korytem toku. Výsledky hodnocení rovněž odrážejí intenzivní tlak na využití údolní nivy jako prostoru, který je díky příhodným podmínkám historicky intenzivně využívaný k zemědělství, intenzivně osídlený a do kterého se koncentrovala průmyslová výroba. Recentní niva je díky těmto aktivitám na rozsáhlých úsecích omezena hrázemi i tělesy komunikace. Je tak přerušena přirozená hydrologická funkce nivy i kontinuita transportních procesů mezi povodím, nivou a tokem. Přirozený inundnací prostor často široké a ploché údolní nivy tak neumožňuje přirozenou dynamiku fluvijálně morfoloických procesů nejen v nivě, ale ani v příbřežní zóně, ani v korytě toku. Nezávisle na tom si české Labe na jednotlivých úsecích toku ponechává alespoň za určitých aspektů hydromorfoloického stavu svůj přírodně blízký charakter. To platí zejména pro úseky, kde intenzivnímu využití brání přírodní podmínky, např. úseky s nevyvinutou údolní nivou nebo s komplikovaným reliéfem. Jedná se např. o říční úsek v hlubokém údolí pod Děčínem, nebo naopak o úseky v podhorské horní části toku českého Labe.

V Německu je zadržování sedimentů v jednotlivých povodích patrně zejména horším hodnocením úseků zaústění přítoků, které se částečně promítá až do Labe. Tato situace je v neposlední řadě i důsledkem velkého počtu příčných překážek v povodí (např. 171 údolních a akumulačních nádrží; MKOL 2005). Při celkovém posuzování průměrné změny nadmořské výšky dna – bilance sedimentů lze dobře rozpoznat známé kritické úseky toku – erozni úsek (WSD Ost 2009; Gabriel et al. 2011) a magdeburský úsek. Obě tato klíčová kritéria odrážejí společně převádějící deficit sedimentů. Procesy zahubování říčního dna jsou nadto spojeny se změnou hladiny vody v toku a zpravidla v hladině podzemních vod. To vede v dlouhodobém horizontu k přerušení vazby mezi vodním tokem a údolní nivou s úbytkem typických lužních stanovišť, živočišných i rostlinných druhů. Morfologický proces zahubování je pro střední Labe velmi významný. Většina indikátorů odráží v základním vzoru jejich hodnocení význam deficitu sedimentů a narušení vazby mezi řekou a údolní nivou. Parametrizace průchodnosti sedimentů (obr. 5-2) dokládá v mapovém znázornění dopady zadržování sedimentů v povodí na vnitrozemský úsek Labe. Nejen tok sedimentů v relevantních přítocích a z českého úseku Labe, ale i v řadě menších přítoků má na rozdíl od vlně tekoucího vnitrozemského úseku Labe velký počet příčných struktur. Tím dochází k výraznému zadržování sedimentů, které se tak nedostávají do Labe. Výsledné deficitly na konci českého úseku Labe a na německých úsecích toku Labe pod zaústěním přítoků kategorie 1 jsou vyznačeny na přehledných mapách. Červeně zakreslené úseky v mapě k průchodnosti sedimentů (obr. 5-2) na dolních úsecích přítoků kategorie 1 v Německu a na toku Labe v České republice pokazují na příčiny v úsecích regulovaných vzdutím. Jako příčina druhého určujícího účinného mechanismu pro narušený režim sedimentů na vnitrozemském úseku Labe se prokazatelně jeví zvýšení unášecí schopnosti sedimentů oproti vyrovnávanému hydromorfoloickému (referenčnímu) stavu. Mapové znázornění ukazaté bilance sedimentů / průměrná změna nadmořské výšky dna (obr. 5-3) zde ukazuje ty úseky Labe, kde se projevuje deficitní bilance sedimentů, resp. vývoj nadmořské výšky dna zejména v důsledku zvýšené unášecí schopnosti toku. Unášecí schopnost toku Labe pro sedimenty, charakterizovaná geometrií ko-

Znacené v mape je oznaceno na trk Labe a úseky zaista tu přítoku Cerný hradniv, Mulde, Šáda a Hravá (Kategorie 1), a to až po první přírodní převodík a na českém úseku na reprezentativním piloto úseku toku Labe. Značené znaky jsou také vysudem situace u dosud nezmapovaných větvích a menších přítoku v povodí. Pro tyto vodní toky nebylo hodnocení užitě podle bokym datovým podkladům dosud vypracováno.

Datquellen Zdroje údajů
- Karl-Franzens-Universität Graz / Universität Karlsruhe, Praha
- Bundesamt für Gewässerkunde (BfG), Köln
- Behörde für Stadtentwicklung und Umwelt (BSU), Hamburg

Obr. 5-2: Hydromorphologický stav v povodí Labe – hodnocení průchodnosti pro sedimenty
ryta se zkrácenými úseky trasy toku, hydrotechnickými stavbami (regulační systém, protipovodňové hráze apod.) a odpovídajícím prouděním převyšuje látkové odnose sedimentů, přínásené do daného úseku toku a odpor sedimentů ležících na dně toku vůči unání. Řeka si v těchto úsecích bere sedimenty ode dna a říční koryto se v dlouhodobém horizontu zahuštuje. Proces zahušťování a v jeho důsledku narušení návaznosti mezi řekou a údolní nivou se dlouhodobě a ve velkém měřítku projevuje na Středním Labi v úseku od ř. km 75 zhruba do f. km 370 a je z hydromorfoložského hlediska určující pro degradaci toku, kdy je příslušným způsobem dotčeno koryto, břehy a údolní niva. Pokračující zahušťování toku v takzvaném erozním úseku (f. km 140 – 290) se rostoucí měrou týká úseků pod ústím Černého Halštrova (Schwarze Elster) až do oblasti kolem Magdeburku (viz kap. 4).

Degradace toku související s narušením návaznosti mezi řekou a údolní nivou má v dotčených dlouhých úsecích vliv nejen na změnu průměrné nadmořské výšky dna toku, ale i na břehy a údolní nivy, což se názorně odrazilo i v předehledném schématu hydromorfoložských ukazatelů (obr. 5-4). Z přehledu vyplyvá, že oba znázornění toku s dlouhodobým zahušťováním toku a na ústí vodních struktur a že jsou tyto stěžejní zátěžové body patrná zejména u břehové struktury, údolní nivy, variability hloubek a šířek (bledemodré kruhy). Dále jsou zde černými kruhy vyznačeny dopady retence sedimentů, a to jak u přítoků, tak i na příčných překážkách v toku Labe (regulace pomocí plavebních stupňů v ČR a jez Geesthacht s vlivem na výsledky hodnocení tak v nadježí, tak i v podjezi).

Při společném hodnocení volně tekoucí vnitrozemské části toku Labe v česko-německém hranici úseku je třeba brát v úvahu nejistoty, plynoucí především z neexistence jednotných datových podkladů, což se dále promítá i do odlučných principů hodnocení. Na české straně se vychází z terénního mapování, zatímco německá strana se opírá o mapové podklady. Nejistotu, vzniklou aplikaci odlučných metodik, eliminovala do značné míry kalibrace skorořínců a hodnotících mechanismů. To dokládá také obrázek 5-4, který zachycuje přeškranní volné hodnocení volně tekoucího úseku Labe.

5.3 HYDROMORFOLOGICKÉ POMĚRY VE SLAPOVÉM ÚSECU LABE

Estuar Labe představuje výsoce dynamický hydromorfoložský systém. Podlaha neustálým prostorově rozsáhlým přirozeným změnám. Řada zásahů prováděných v souvislosti s provozem přístavu a ochranou před povodními měla vliv na tento systém v minulosti a ovlivňuje ho i dnes. Vedle hydrotechnických opatření v souvislosti s úpravami plavební dráhy mají mimořádný ekologický význam také opatření na ochranu před bouřlivým přílivem, oddělení vodních javů skorořínců na přístavu, zatímco vody v přístavu mají možnost vývoje a zároveň zajišťují, že se nevznikne hrozba. Tato hrozba je pro stanovitelný vývoj vody, nebo snížení sněhových vod nebo snížení snížení sněhových vod vody. Podle Rákovec směrnice o vodách je lepším úseku Labe rozděleny na čtyři útvary povrchových vod (Labe – východ, Labe – západ, Labe – bracké vody), které byly zaznamenány v průběhu vodních útvarů a podle dělí vodních útvarů, které jsou v průběhu vodních útvarů.

Hydromorfoložské poměry slapového úseku Labe jsou v součtu znázorněny na přehledném mapách (obr. 5-2 a 5-3, resp. K-A4-2 až K-A4-8). Kompletní výsledky hodnocení jednotlivých funkcí oblasti (viz

Znázornění v mapě je omezeno na tok Labe a úseky zaústění přítoku Černý hájček, Mulde, Bělá a Haváda (Kategorie 1), a to i až po první přítomnou přítoků, a na českém úseku na reprezentativním měřítku toku Labe. Znázornění položení jsou také vsledkem situace u dosud nezmapovaných větví a menších přítoků v povodí. Pro toto vodní toku nebylo hodnocení vzhledem k chybějícím datovým podkladům dosaženo vysvětlení.

Datenquellen Zdroje údajů:
- Karlín-Universita Prag / Univerzita Karlova, Praha
- Bundesanstalt für Gewässerkunde (BfG), Koblenz
- Behörde für Stadtentwicklung und Umwelt (BSU), Hamburg

Obr. 5-3: Hydromorphologický stav v povodí Labe – hodnocení bilance sedimentů (D) / ověření hydrologického režimu (CZ)
Obr. 5-4: Přehled výsledků hodnocení hydromorfológičtějších indikátorových ukazatelů na volně tekoucím vnitrozemském úseku Labe
příloha A2-5) jsou obsaženy v dokumentaci FGG Elbe (2014). V souhrnu lze konstatovat, že ve funkčních oblastech 1 až 3 se třída 2 prakticky nevyvíjí, dominují třídy 3 a 4. Ve funkčních oblastech 4 až 6 je v určitých úsecích dosaženo také hodnocení stupně 2. Tuto situaci způsobují následující příčiny:

- Významné hydromorfológie změny estuáru, jako je prohlubování plavební dráhy a ztráta rozsáhlých záplavových ploch, se týká celého Dolního Labe. Za posledních sto let se slapový zdvih v Hamburku zvýšil zhruba o 1,4 m. Úseky toku na východ od Hamburku, kde byly přirozeně slapové vlivy dříve známedatelné, vykazují nyní slapový zdvih přes 2 m.

- Režim sedimentů Dolního Labe je silně narušený (kap. 4.3). Vedlejší ramena a ostatní postranní prostory s pásmy mělčin se v důsledku jejich postupného zánášení bahnem (šlikem) zmenšují a naopak se zvýšuje množství mořských sedimentů, přinášených přílivovým prouděním („tidal pumping“).

- V posuzovaných funkčních oblastech došlo v některých úsecích k výraznému úbytku oblastí mělčin a předhrází. V důsledku trasy hrází vedené v blízkosti břehů není v řadě lokalit k dispozici dostatečný prostor, který by umožňoval více dynamiky (IBP 2012).

- Funkční oblasti jsou převážně výrazně ovlivněny koncentračními hrázemi, opevněním břehů a protipovodňovými hrázemi. Břehy slapového úseku Labe mají kvůli silnému zatížení vinobitím, které je vyvoláno větrem a lodním provozem, zpravidla mohutné opevnění, zejména v těch úsecích, kde nejsou v příbřežní zóně žádné mělčiny – wattys. Na dalších místech se zvýšuje eroze břehů a vyžaduje vyšší náklady na zabezpečení protipovodňových hrází.

- V estuáru se směšují sedimenty z horních části toku s pevnými látkami přinášenými od pobřeží a ze Severního moře. Působením slapových vlivů dochází (v závislosti na zritnosti) k transportu v obou směrech. Mezi řekou / estuárem a mořskými mělčinami – wattys / Severním mořem nelze vymezeno jasnou dělicí čaru; zde dochází rovněž k výměně materiálu v obou směrech.

- V úseku mezi Geesthachtém a Cuxhavenem jsou výrazné rozdíly v šířce toku. Celková šířka prostoru mezi ochrannými hrázemi v úseku od Geesthachtu po Hamburk činí cca 500 až 700 m. Dále ve směru toku pod Hamburkem se rozestupí mezi ochrannými hrázemi zvětšuje až na 2,0 km a více. Od města Brunsbüttel (cca ř. km 700) začíná typická nálevkovitá ústí estuáru, které na soutoku s řekou Oste dosahuje šířky cca 6,5 km. U Cuxhavenu, kde se Labe vlévá do Severního moře, se estuár rozšířuje až na 17 km.

6. ANALÝZA RIZIK Z HLEDISKA KVALITY

Analýza rizik z hlediska kvality byla provedena pro regulovaný a volně tekoucí vnitrozemský úsek Labe, pro slapový úsek Labe a pro relevantní příhory kategorie 1 a 2. Vychází z přehledu o kvalitě plavení v povodí a k z kvantitativnímu zařazení látkových toků. Toky partikulárně vázaných látek z dílčích povodí se dostávají přímo nebo nepřímo prostřednictvím přítoků do Labe a pokračují tak v podstatě jeho tokem až do ústí do Severního moře. Na začátku je proto nezbytné podívat se na problematiku důsledně z perspektivy celého povodí (posouzení systému), tento pohled pak dále přechází v souvislosti s analýzou zdrojů do jeho části, a tím i do národní diferenciaci. Na konci je pak opět pohled na celé mezinárodní povodí.

6.1 METODIKA, DATOVÉ PODKLADY A NEJISTOTY

Předmětem analýzy rizik z hlediska kvality jsou relevantní předměty ochrany, které byly identifikovány v kontextu managementu sedimentů (kap. 3.3 a příloha A2-3). Analýza se provádě vězňeb na znečišťující látky, tj. v zásadě pro každou z 29 rele-
vantních znečišťujících látek v kontextu managementu sedimentů (tab. 3.1). Analýza je podrobněji vysvětlena v příloze A2-6 a provádí se ve dvou stupních:
1. hodnocení na úrovni povodí za účelem identifikace oblastí původu partikulárně vázaných znečišťujících látek – stanovení priorit u toků těchto látek podle dílčích povodí
2. analýza ve vazbě na zdroje znečištění v oblastech původu identifikovaných v rámci stupně 1.

Stupeň 1 se absolvuje ve třech dílčích krocích a začíná roční klasifikace (2003 – 2011) sedimentovatelných plavení na referenčních profilích Labe a jeho přítoků kategorie 1. Odstupněné hodnocení indikátorů kvality bylo popsáno v kapitole 3.3. Výsledně se získá plošně rozsáhlý přehled pro každou znečišťující látku, který umožňuje také zpětné závěry ohledně časového vývoje v letech 2003 až 2011. Tento kvalitativní pohled na toky látek je nezbytné nutný pro odhad jejich nadregionálního významu a stanovení priorit, sám o sobě však nestačí. Proto následuje posouzení odnosi znečišťujících látek (F) v podélném profilu Labe včetně odhadu podílu odnosu z dílčích povodí na celkovém odnose ve vnitrozemském úseku Labe (% F_{MOP}) a nadregionální, imisní bilance odnosi. Bilancí látkových odносů lze z důvodu dostupných dat a poznatků zpracovat pouze pro vnitrozemský úsek Labe od profilu Obříství (ČR) po profil Schnackenburg (SRN) a pro omezený výběr látek. Metodika výpočtu látkových odnosi je obsažena v příloze A2-11, bilance nadregionálních odnosi v příloze A2-12. Pro odhad podílu látkových odnosi a imisní bilance odnosi mají velký význam referenční profil kvality (Obříství, Hřensko / Schmilka a Schnackenburg, a to vždy ve spojitosti s příslušnými referenčními profily kontinentálně vodních toků, viz příloha A2-1). Obříství označuje začátek českého a celého bilančního úseku, Hřensko / Schmilka konec českého a začátek německého úseku a Schnackenburg konec německého bilančního úseku. Ve Schnackenburgu končí zároveň i bilanční úsek celé mezinárodní oblasti povodí (F_{MOP}). Do bilance látkových odnosi se promítají naměřené výsledky v profilích Obříství, Hřensko / Schmilka a Schnackenburg a na referenčních profilích přítoků kategorie 1 a 2a a dále látkové odnose z přímých bodových zdrojů Labe (imisní přístup).

Pro slabý úsek Labe směrem do Severního moře nelze ucelenou bilanci látkových odnosi prozatím provádět z metodických důvodů (viz kap. 3.2 a 4.3). Dílčí části, jako je odštěpování nánosů nebo bodo- vé vnosy, se však naproti tomu kvantifikovat dají. Referenční profil Seemannshöft představuje na základě dohody (MKOL; FGG Elbe) a také s ohledem na rozdělení útvárů povrchových vod podle Rámcové směrnice o vodách bilanční profil limnického úseku Labe vůči brakickým vodám, resp. Severnímu moři.

Stupeň 2 obsahuje analýzu rizik pro specifické znečišťující látky s vazbou na zdroje, které byly v rámci dílčích povodí ve stupni 1 identifikovány jako relevantní. V kontextu této koncepce pro nakládání se sedimenty jsou posuzovány níže uvedené typy zdrojů znečištění:
- Bodové zdroje (odpadní vody a bodové vnosy z ukončené těžební činnosti)
- Sedimenty / staré sedimenty. Sedimenty nejsou zdrojem znečišťujících látek v běžném smyslu. Jsou však schopné akumulovat trvále nebo dočasně určité látky v závislosti na situaci v toku a hydrologických poměrech. Zde se posuzuje zdrojová funkce sedimentů vyvolaná hydrologickou situací na níže položené říční úseky.
- Staré ekologické zátěže a lokality s podezřením na staré ekologické zátěže na toku
- Jiné zdroje (např. urbánní systémy).

Metodický postup pro odhad významnosti jednotlivých zdrojů je popsán v příložích A2-6 až A2-10 i v příslušných odborných zprávách (příloha A3-1). Přehled poskytuje tabulka 6-1. Na obrázku 6-1 je v souvislosti znázorněn postup při analýze rizik z hlediska kvality.

Pro odhad významnosti daného zdroje se používají tři kritéria, přičemž všechna musí být splněna.
1. Minimální koncentrace.
2. Minimální množství.
 Prověření významnosti se provádí jako rozhodnutí ano / ne na základě odborného odhadu.
 Prověření významnosti se provádí jako rozhodnutí ano / ne na základě odborného odhadu.

Pokud jde o minimální množství, platí kontrolní kritérium látkový odnos / potenciální odnos > 10 % F_{referenční profil}. Při prověřování se zjistují buďto
emisní látkové odnose (bodové zdroje) nebo potenciál odnose (sedimenty / staré sedimenty; ostatní zdroje). Jako potenciál odnose se označuje celkově množství znečišťujících látek (v kg nebo t) na každý zdroj. V případě sedimentů / starých sedimentů může být pro zjištění potenciálu odnose účelně vytvořit prostorové jednotky, např. výhonová pole nebo skupiny postranních struktur v definovaných úsecích toku.

Mobilizovatelnost se posuzuje na základě pilotních měření erozního smykového napětí a dalších ukazatelů určujících koheziivitu sedimentů v terénu a v laboratoři a na základě odhadu remodelizace v důsledku povodně podle dat monitoringu (sedimenty / staré sedimenty) nebo mobilizačních scénářů a dokumentací (staré ekologické zátěže).

Obr. 6-1: Analýza rizik z hlediska kvality

nin. Souhrnné přehledy dat jsou obsaženy v příloze A4 (tab. T-A4-2, T-A4-4 a T-A4-5). U těžkých kovů a arsenu byly pro výpočty látkových odnosů použity v zásadě hodnoty celkových nefiltrovaných vzorků vody a u organicích látek vzhledem k horší prokazatelnosti ve vodě byly použity hodnoty vzorků pevné matrice (plaveniny nebo sedimentovatelné plaveniny / čerstvé sedimenty). Metody výpočtu látkových odnosů se používaly na základě nejlepší dostupné datové základny. Pro podélné profily látkových odnosů a bilančování odnosů byly průběžně použity metody 1.1a (těžké kovy a arsen) a 2.1.1b (organicí látky). Data využitá pro stupeň 2 analýzy rizik ve vazbě na zdroje jsou zdokumentována u zodpovědných správců dat (příloha A2-1) a v jednotlivých odborných zprávách (příloha A3-1). Pro možnost pozdějšího jednotného shrnutí zjištěných dat byl pro všechny dílčí úseky a projekty stanoven závazný minimální rozsah k charakterizaci datových souborů, měrných profilů a naměřených dat (příloha A4, tab. T-A4-6).

Nejistoty ve výpovědích jsou jmenovitě pojednány v jednotlivých odborných příspěvících (příloha A3) a v popisu metod (příloha A2). V zásadě jsou výsledkem:

- částečně nedostatečného rozsahu dat. To se týká zejména přítoků kategorie 2, které nejsou předmětem pravidelného sledování vodních toků, ale i zdrojů starých sedimentů a starých ekologických zátěží, které doposud nebyly posuzovány z hlediska potenciálu látkových odnosů a mobility, což jsou pro management sedimentů v povodí rozhodující aspekty.
- proměnlivosti a komplexnosti systému Labe, víz také kap. 6.2 a 3.1.
- toho, že stávající monitorovací programy nezohledňují specifickou problematiku managementu sedimentů, což se např. projevuje v tom, že ne pro všechny relevantní znečišťující látky lze zpracovat rozumné bilance látkových odnosů.
- omezení na velké zdroje, víz např. kap. 6.2, zpracování bilancí.

6.2 KVALITATIVNÍ POMĚRY V POVODÍ

Popis kvalitativních poměrů v povodí odpovídá stupni 1 hodnocení rizik. Z pohledu povodí mají klíčové postavení tři referenční profily: Hřensko / Schmilka, kde se bilančně český podíl na zatižení znečišťujícími látkami, Schnackenburg, který představuje bilanční profil celého povodí vnitrozemského úseku Labe a zároveň i němčině krátkého vodního toku, a Seemannshöft jako bilanční bod pro přechod do Severního moře. Z německého pohledu, jakožto subjektu ležícího níže na toku, zobrazuje profil Hřensko / Schmilka oblast původu látek, kterou je v bilanci nutno posuzovat jako referenční profil relevantního přítoku kategorie 1.
Výsledek klasiﬁkace sedimentovatelných plavení na referenčních proﬁlech Labe a relevantních přítocích kategorie 1 a průběh látkových odnoseň v roce 2005

V podělném proﬁlu Labe je znázorněn na příkladu kadmia (Cd) a hexachlorobenzenu (HCB) na obrázcích 6-2, 6-3 a 6-4. Všechny ostatní mapové výstupy klasiﬁkace a podkladová data, včetně statistických charakteristik, jsou obsaženy v příloze A4 (mapy K-A4-9.1 až K-A4-9.29). Tabulka 6-2 obsahuje v sloupci 4 kompletní výčet znečišťujících látek, které překračují horní hranicu hodnotu (HPH). Je zjevné, že v proﬁle Hřensko / Schmilka a Schnackenburg jsou HPH překročeny u řady relevantních znečišťujících látek. To se týká i většiny látek v referenčních proﬁlech Vltavy, Mulde a Sály. U ostatních přítoků kategorie 1 je doložen menší počet překročení hodnot. Pomocí podobných proﬁlů látkových odnoseň jsou znázorněny hlavní oblasti půdového látka (obr. 6-4 pro Cd a HCB, všechny ostatní znečišťující látky v příloze A4, obr. B-A4-2.1 až B-A4-2.29). Látkový odnos HCB zaznamenává v referenčním proﬁlu Děčín prudký vzestup, v ukazateli Cd představuje silný impuls řeka Mulde. Na základě dat látkových odnoseň se dají tyto vlivy v proﬁlu Schnackenburg kvantifikovat jako podíly na látkovém odnoseň (% F_{MOP}). V případě, že tento podíl překročí minimálně jednou v hodnoceném období 2003 – 2011 hodnotu 10 %, je tato látka zařazena do výběru ve sloupci 5 tabulky 6-2. To jsou pak pro příslušná dílčí povodí ty znečišťující látky, kteřé je dělá třeba posuzovat v rámci analyzy rizik. V případě proﬁlu Hřensko / Schmilka jsou uvedeny všechny látky, jejichž podíl na látkových odnoseň % F_{MOP} výrazně překračuje hodnotu 10 %. Tučně zvýrazněny jsou látky, které vykazují ve výsledku jak u porovnání látkových odnoseň v proﬁlech Hřensko / Schmilka a Schnackenburg (% F_{AC} / % F_{DC}), tak i u po- rovnání odnoseň % F_{C} / (% F_{Muda} + % F_{Sav}), na základě průměrné hodnoty za období 2003 – 2011 minimálně 60 % podíl dílčího českého, resp. německého povodí. Pro českou část to jsou ukazatele Cr, HCB, p,p’-DDT, PCB, PAU a pentachlorbenzen, pro německou část Cd, Hg, Zn, HCH a dioxiny / furany.

V referenčním proﬁlu Seemannshöft je zaznamenáno překročení HPH u 11 z celkového počtu 29 relevantních látek (tab. 6-2). Toto překročení hodnot je do značné míry důsledkem látkových vnosů z vnitrozemí. Na úseku toku mezi proﬁly Schnackenburg a Seemannshöft přicházejí další vnosy, na dolnosaském úseku je to např. Cd, PAU a TBT. Dominantní oblastí pro vnosy TBT je Hamburk. Převážně nižší koncentrace znečišťujících látek v proﬁlu Seemannshöft oproti proﬁlu Schnackenburg jsou důsledkem:

1. sedimentačních procesů v klidových zónách Labe a přilehlé recentní údolí nívě na dílčím úseku mezi oběma referenčními proﬁly,
2. směšování více kontaminovaných sedimentů limnického půdového se sedimenty mořského půdové a
3. odtěžování kontaminovaných sedimentů v areálu hamburského přístavu a jejich kontrolovaného ukládání na souši.

Tab. 6-2: Kvalitativní poměry v povodí

<table>
<thead>
<tr>
<th>Dílčí povodí</th>
<th>Výběr relevantních znečištěujících látek kritérium HPH</th>
<th>Výběr relevantních znečištěujících látek kritérium 10 % F_{100}</th>
<th>Relevantní dílčí povodí (emise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>referenční profil</td>
<td>% Ác</td>
<td>% Ác</td>
<td></td>
</tr>
<tr>
<td>Labe po soutoku s Vltavou</td>
<td>9</td>
<td>11</td>
<td>Hg, Cd, Pb, Ni, HCH, p,p''-DDT, p,p''-DDD, p,p''-DDE, PCB-52, -101, -138, -153, -180, HCB, BaP, fluoranthén, Σ 5 PAU, TBT</td>
</tr>
<tr>
<td>Vltava</td>
<td>19</td>
<td>22</td>
<td>Hg, Pb, Ni, p,p''-DDT, p,p''-DDD, p,p''-DDE, PCB-101, -138, -153, -180, BaP, anthracen, fluoranthén, Σ 5 PAU, TBT</td>
</tr>
<tr>
<td>Ohře</td>
<td>4</td>
<td>4,5</td>
<td>Hg, Pb, Ni, As, HCH, DDX, PCB-28, -138, -153, PeCB, HCB, fluoranthén</td>
</tr>
<tr>
<td>Terezín</td>
<td>0,7</td>
<td>0,9</td>
<td>Hg, Cd, Pb, Zn, Cu, Ni, As, HCH, p,p''-DDT, p,p''-DDD, p,p''-DDE, PCB-28, -101, -138, -153, -180, PeCB, HCB, fluoranthén, TBT</td>
</tr>
<tr>
<td>Ústí nad Labem</td>
<td>n. a.</td>
<td>n. a.</td>
<td>Hg, Zn, Cu, Ni, As, Cr, p,p''-DDT, p,p''-DDD, p,p''-DDE, PCB, PeCB, HCB, benzo(a)pyren, anthracen, fluoranthén, Σ 5 PAU, TBT</td>
</tr>
<tr>
<td>Odpadní vody ČR</td>
<td>n. a.</td>
<td>n. a.</td>
<td>Cd, Pb, Zn, Cu, Ni, As</td>
</tr>
<tr>
<td>ČR</td>
<td>35</td>
<td>41</td>
<td>Cd, Pb, Zn, Cu, Ni, As</td>
</tr>
<tr>
<td>Hfsensko/Schmilka</td>
<td>0,1</td>
<td>0,1</td>
<td>Cd, Pb, Zn, Cu, Ni, As</td>
</tr>
<tr>
<td>Třebisch</td>
<td>4</td>
<td>4,5</td>
<td>Hg, Cd, Pb, Zn, Ni, p,p''-DDT, p,p''-DDD, p,p''-DDE, HCH, fluoranthén</td>
</tr>
<tr>
<td>Černý Halštřov</td>
<td>5</td>
<td>6</td>
<td>Hg, Cd, Pb, Zn, Ni, As, HCH, p,p''-DDT, p,p''-DDD, p,p''-DDE, HCB, fluoranthén, TBT, dioxiny / furany</td>
</tr>
<tr>
<td>Gorsdorf</td>
<td>16</td>
<td>20</td>
<td>Hg, Cd, Pb, Zn, Ni, HCH, p,p''-DDT, p,p''-DDD, p,p''-DDE, HCB, benzo(a)pyren, anthracen, fluoranthén, Σ 5 PAU, TBT, dioxiny / furany</td>
</tr>
<tr>
<td>Mulde</td>
<td>16</td>
<td>19</td>
<td>Hg, Pb, Ni, p,p''-DDT, p,p''-DDD, p,p''-DDE, fluoranthén, TBT</td>
</tr>
<tr>
<td>Dessau</td>
<td>82,4</td>
<td>100</td>
<td>Hg, Cd, Pb, Zn, Ni, As, HCH, p,p''-DDT, p,p''-DDD, p,p''-DDE, HCB, fluoranthén, TBT, dioxiny / furany</td>
</tr>
<tr>
<td>Zbyvající část vnitrozemského úseku Labe</td>
<td>7,6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Odpadní vody vnitrozemského úseku Labe 5</td>
<td>n. a.</td>
<td>–</td>
<td>n. a.</td>
</tr>
<tr>
<td>SRN</td>
<td>n. a.</td>
<td>–</td>
<td>n. a.</td>
</tr>
<tr>
<td>Slapový úsek Labe</td>
<td>10</td>
<td>–</td>
<td>Hg, Cd, Pb, Ni, α-HCH, p,p''-DDT, p,p''-DDE, HCB, fluoranthén, Σ 5 PAU, TBT</td>
</tr>
<tr>
<td>Seemannshöft</td>
<td>n. a.</td>
<td>–</td>
<td>n. a.</td>
</tr>
</tbody>
</table>

1 Referenční období 2003 – 2011; tučně zvýrazněné látky: látkový odnos pro mezinárodní oblast povodí (MOP) % F_{100} ≥ 60 % v ČR nebo v Německu
2 Bilanční úsek vnitrozemské části toku Labe po profilu Schnackenburg
3 p,p''-DDT látkový odnos v referenčním profilu Schnackenburg, všechny odnosit kovů a arsenu podle metody 1.1.a, pro organicí látky podle metody 2.1.1b (viz příloha A2-11)
4 Může pouze pro Cd, Pb, Zn, Cu, Ni a As; referenční rok 2005
5 Pouze přímé vnosy odpadních vod do Labe; vnosy do přítoku jsou zde již poddrceny (v ČR od soutoku s Vltavou)
6 Nebílocenzovaná část vnitrozemského úseku Labe mezi Schnackenburgem a Geesthachtům
n. a. – nedejte aplikovat
Variabilita českých podílů na celkovém vnosu v letech 2003 – 2011 je největší u Cd cca s 10 % až cca 50 %, nejméně je u Zn (15 – 30 %) a Cu (40 – 55 %). Časový trend se z toho však nedá odvodit. Ve sloupci 6 tabulky 6-2 jsou souhledně uvedeny hlavní výsledky z hledisku vnosů znečišťujících látek, pro které bylo možno zpracovat bilanci.

Z bilance látkových odnosů lze usuzovat, že dochází k retenci (převážně sedimentace), resp. mobilizaci (převážně eroze) partikulárně vázaných znečišťujících látek. Platí tedy:

(1) $\Delta F = F_{\text{konec}} - \Sigma F_{\text{přítoky / odpadní vody}}$
(2) $\Delta F \% (\text{MOP}) = \frac{(F_{\text{konec}} - \Sigma F_{\text{přítoky / odpadní vody}})}{F_{\text{MOP}}}$

V případě, že $\Delta F > 0$, dochází v bilančním úseku převážně k mobilizaci, při $\Delta F < 0$ jde převážně o retenci. Vzhledem ke stávajícím nejistotám v posuzování systému se jeví jako účelně definovat indiferentní rozsah ±10 %. Tabulka 6-3 zachycuje $\Delta F \% (\text{MOP})$ v horní části pro Českou republiku v bilančním úseku Obříství – Hřensko / Schmilka a v dolní části pro Německo v bilančním úseku mezi profily Hřensko / Schmilka a Schnackenburg, a to vždy pro průměrný hydrologický rok 2005 a také maximální a minimální hodnoty v letech 2003 – 2011 s uvedením roku, kdy se tyto hodnoty vyskytly. V českém bilančním úseku je vyhodnocena mírná retence u Cd a Pb v roce 2003 (průtokově podprůměrný rok), v případě ostatních podsvazených kovů je výsledek neprůkazný. Zvýšený odnos – mobilizace se výrazně projevil v odtokově nadprůměrných letech 2006 a 2010 v rozmezí 18 až 60 % a v případě Ni činil v roce 2004 extrémních 260 % vztažených na ΔF_{cz}. V německém bilančním úseku je prokázána výrazná retence, zčásti dosahující až několika stokev procent, téměř výlučně v povodňovém roce 2006, a to jak u znečišťujících látek, tak i u plavení. Mobilizace v bilančním povodí se velmi intenzivně projevuje v různých letech podle toho, o jakou látku se jedná. Maximální hodnoty se pohybují od 15 do 50 %. Podobná bilance látkových odnosů je obsažena v příloze A4 (tab. T-A4-8).

Jako výsledek analýzy rizik – stupeň 1 lze konstatovat:

- V české části povodí Labe jsou horní pravděpodobné hodnoty překročeny u více než 50 % relevantních látek již na úseku středního Labe. V podobném spektru látek překračují horní pravděpodobné hodnotu sedimentovatelné plaveniny na Vltavě. Na Bilině byl v odstředěných plaveninách zjištěn nejvyšší počet případů látek s překročením (23 z 29 relevantních látek).
- Relevantní podíl na látkových odosech je pro většinu kovů, As i organicke látky vyhodnocen jak v referenčním profilu v Obříství před soutokem Labe s Vltavou, tak v referenčním profilu Vltavy v Zelčině. U většiny kovů s výjimkou Cu je z nadregionálního pohledu podíl látkových vnosů vyšší na Vltavě (20 až 30 % F_{MOP}). V případě Vltavy byly nejvyšší vnosy zaznamenány v roce 2006.

Tab. 6-3: Výsledky bilance látkových odnosů v České republice a Německu vyjádřené v procentech v letech 2003 – 2011 (výpočet odnosů dle metody 1.1a)

<table>
<thead>
<tr>
<th></th>
<th>Plaveniny</th>
<th>Cd</th>
<th>Pb</th>
<th>Zn</th>
<th>Cu</th>
<th>Ni</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>Česká republika</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta F %$</td>
<td>25</td>
<td>28</td>
<td>61</td>
<td>30</td>
<td>54</td>
<td>260</td>
<td>18</td>
</tr>
<tr>
<td>2005</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta F %$</td>
<td>21</td>
<td>-18</td>
<td>-11</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Německo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta F %$</td>
<td>45</td>
<td>50</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>2005</td>
<td>20</td>
<td>50</td>
<td>-55</td>
<td>-85</td>
<td>-55</td>
<td>-55</td>
<td>-55</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta F %$</td>
<td>-25</td>
<td>-55</td>
<td>-250</td>
<td>-75</td>
<td>-150</td>
<td>-285</td>
<td>-115</td>
</tr>
</tbody>
</table>

1 $\Delta F > 0 \%$ - mobilizace (eroze), $\Delta F < 0 \%$ - retence (sedimentace)
2 v oblasti nejistot od ± 10 %
Obr. 6-4: Látkové odnasy v podélenním profilu (a – Cd; b – HCB)

Relevantní podíl na látkových odnosech je pro většinu znečišťujících látek dosažen již v referenčním profilu Hřensko / Schmilka. Česká republika představuje z německého hlediska, jakožto subjektu ležícího niže na toku, pro tyto znečišťující látky významnou, u některých dokonce rozhodující oblast původu.

V německé části povodí Labe patří k hlavním známým cestám vnosu celé řady relevantních znečišťujících látek tok Mulde a Sály. Další rozbor bude třeba provést v souvislosti s analýzou rizik, stupeň 2. Vedle toho je pro stupeň 2 relevantní i řeka Třebisch jako přítok kategorie 2.

Z nadregionálního hlediska není třeba provádět analýzu rizik ve vazbě na zdroje (stupeň 2) pro Jizeru, Orlicí, Černý Hallštrov a Havolu (a tudiž ani pro Sprévu).

V následujících kapitolách jsou stručně shrnuty hlavní charakteristiky jednotlivých typů zdrojů. Základní informace a datové podklady této analýzy a podrobné popisy jsou zdokumentovány v odborných zprávách (tab. 6-1) a v příslušných úřadech (příloha A2-1). V kapitole 6.8 je provedeno seřazení zdrojů ve vazbě na hlavní úseky toku Labe.

6.3 ÚDOLNÍ Nivy a Další Místá Ukládání Sedimentů

Recentní údolní nivy hrají v procesu transportu látek v řece významnou roli. To je patrné zejména při povodnách, kdy se říční voda vylévá z břehů a transportuje plaveniny do údolních niv. Zpomalení rychlosti proudění v předhrází vede k tomu, že se zde usazuje a zachycuje značná část plavenin. Údolní nivy jsou z této perspektivy prostorem pro management sedimentů. Pro účely této koncepce pro nakládání se sedimenty byly v německé části povodí provedeny detailní rozborové a vlastní průzkumy (Krüger et al. 2013). Z nich lze vyvodit něž ve uvedené závěry:

Zatíženo k zaplavením velkých částí údolních niv pod Magdeburkem dochází již při menších povodních (dvojnásobek průměrných průtoků), zůstávají údolní nivy v oblasti soutoku se Sálou (v erozním úseku Labe) do značné míry suché. Naproti tomu při průměrných povodních je v Severoněmecké nižině zaplavena převážná část všech recentních údolních niv (tj. území na vzdusné straně ochranných hrázi). Zejména údolní nivy nad soutokem se Sálou mohou v důsledku toho využít svůj velký retenční potenciál až při průtokově intenzivních povodních.

Vztáženo na odnose plavenin v Hitzackeru (tabl. T-A4-1) představuje retence sedimentů v údolních nivách při malých povodních cca 6,5 %, při průměrných povodních cca 24 % a při extrémních povodních až 27 %.

Výpočty odhadu retence sedimentů na základě vytváření rozdílu podle doby dotoku mezi látkovými odnosey na různých místech měření podél Labe v letech 2003 až 2008 (BGF 2013c) ukázaly, že při malých povodních je zachycováno 25 000 t až 75 000 t (median: 52 000 t), při průměrných povodních 85 000 až 155 000 t (median: 120 000 t), při extrémní povodní v roce 2006 bylo těměř 500 000 t.

Význam recentních údolních niv pro retenci znečišťujících látek se dá ukázat – také při jejich odstupňování – na základě reprezentativních případů povodí v roce 2004, 2005 a 2006. Jako příklad slouží Hg. V roce 2004 (dvojnásobek průměrných průtoků) bylo na všech labských nivách zadrženo 0,08 t, v roce 2005 (průměrný maximální průtok – Qmax) 0,23 t a v roce 2006 (extrémní průtok) 0,34 t. Retence sedimentů představovala 8 % až 57 % příslušného ročního látkového odnomu rtuti v profilu Schnackenburg.

Vedle údolních niv patří k místům, kde se ukládají sedimenty, a tudíž případně i znečišťující látky, také přírodní a umělá říční jezera, údolní nádrže a přístavní bazény. Tabulka 6-4 ukazuje nejdůležitější příklady z hlediska kvality. V souvislosti s koncepcí pro nakládání se sedimenty byla prozatímní podrobnější posuzována funkce nádrže Muldestausee (Junge 2013). U unášených, převážně partikulárně vázaných tóžkých kovů Pb, Cr, Cd a Cu se retence ve vzta- hu k látkovým odnosům Mulde na přítoku do nádrže za normální odtokové situace pohybuje mezi 87 %
<table>
<thead>
<tr>
<th>Dílčí povodí</th>
<th>Nadregionální význam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Údolní nádrž Les Království</td>
<td>Horní Labe (CZ)</td>
</tr>
<tr>
<td>Kaskáda údolních nádrží</td>
<td>Vltava</td>
</tr>
<tr>
<td>Údolní nivy</td>
<td>Střední Labe</td>
</tr>
<tr>
<td>Nádrž Muldestausee</td>
<td>Mulde</td>
</tr>
<tr>
<td>Údolní nádrž Eibenstock</td>
<td>Mulde (horní tok zdrojnice Zwickauer Mulde)</td>
</tr>
<tr>
<td>Údolní nádrž Bleiloch</td>
<td>Sála</td>
</tr>
<tr>
<td>Údolní nádrž Pirk</td>
<td>Sála (horní tok Bílého Halštrova)</td>
</tr>
<tr>
<td>Nádrž Elsterbecken</td>
<td>Sála (dolní tok Bílého Halštrova)</td>
</tr>
<tr>
<td>Jezera na Havole</td>
<td>Havola (dolní tok Havoly)</td>
</tr>
<tr>
<td>Přístav Hamburk</td>
<td>Slapový úsek Labe</td>
</tr>
</tbody>
</table>

Relevantní vnosy ze staré důlní činnosti s přímým vlivem na Labe nejsou v současnosti známy.

Na německé straně lze v souhrnu konstatovat:

- Významné bodové zdroje těžkých kovů a arsenu se nachází na německé straně v povodí Sály a Mulde. Bodové zdroje s přímým vlivem na německý vnitrzemský úsek Labe jsou zanedbatelné. Ve slovovém úseku Labe se prostřednictvím čtyř podniků evidovaných v registru PRTR včetně sdružení čistirem odpadních vod Köhlbrandhöft / Dradenau dostává do toku určité množství Cd, Hg, Pb, Ni, Zn, Cu a PAU (viz také kap. 6.7). Tyto vnosy však nevedou v porovnání s vnozem v nitrzemské části povodí k žádnému dalšímu významnému zatížení (BSU 2013).

- Vypouštěné komunální a průmyslové odpadní vody přispívají k celkovému zatížení labských sedimentů látkami hodnocenými v této koncepci jen minimálně. To se však může naprosto změnit v souvislosti s novodobými látkami, popř. s látkami, které bude nutno hodnotit v budoucnu.

- Nejvyšší látkové odnose z bodových zdrojů pro Cd, Pb, Zn a Ni pocházejí z povodí Sály a pro As z povodí Mulde. Pro Cd, Pb, Zn a As jsou rozhodu-

a 71 %, u znečišťujících látek s vyššími rozpustnými podíly (Zn, As, Ni) mezi 50 % a 39 %.

6.4 BODOVÉ ZDROJE

Jako bodové zdroje jsou v kontextu koncepce na pokládání se sedimenty označovány vypouštěné komunální a průmyslové odpadní vody a bodové vnosy ze staré důlní činnosti. Vzhledem k dostupným datům bylo možné provést kvantifikaci pouze pro těžké kovy a arsen. **Obrázek 6-5** znázorňuje podíl látkových odnosů z bodových zdrojů na celkovém látkovém odnosu (2008) v referenčních profilích Zelčín v povodí Vltavy a Groß Rosenberg v povodí Sály.

Ze souhrou vyplývají pro **českou** část níže uvedené závěry:

- Procentuální podíly ročních odnosů látek, které byly v roce 2011 vypouštěny do Labe z 12 významných průmyslových podniků a komunálních čistirem odpadních vod evidovaných v registru PRTR, činily v bilančním profilu Hřensko / Schmilka u rtuti 4,9 %, u zinku 4,0 % a u mědi 2,1 %. U dalších těžkých kovů a arsenu se podíly odnosů pohybovaly pod 2 %. **Obrázek 6-6a** zachycuje příklad vypouštěných odpadních vod v oblasti Pardubic.
jící důlní vody z ukončené těžební činnosti a ze sanace dolů. Podíly přesahující 10 % celkového látkového odnosu (referenční rok 2008) se vyskytují na Mulde u (Cd > Zn > As) a na Sále u (Cd > Zn > Pb). Bodové vnosy Ni v povodí Sály jsou v prvé řadě vypouštěné odpadní vody. Na látkových odnozech se řádově podílí z 10 – 20 %.

Relevantním bodovým zdrojem řeky Triebisch je důlní štola Rothschönberger Stolln, která z oblasti kolem Freibergu přináší ročně cca 0,3 t/rok Cd a 70 t/rok Zn (obr. 6-6b).

Na horním toku Mulde je řada menších a větších bodových zdrojů ovlivněných důlními vodami ze staré těžební činnosti. Stěžejní oblasti pro tok Freiberger Mulde (Moldavský potok) je oblast...
kolem Freibergu se říčkou Královské smluvní společností (Königlich Vertragliche Gesellschaft Stolln) a hlavní říčkou Umbruch. Pro zdrojnicí Zwickauer Mulde mají význam především paralelní důlní štoly, jako je např. Marcus Semmler Stolln, a to v ukazatele arsenu.

Relevantním bodovým zdrojem v povodí Sály je říčka Schlüsselstollen, která v odtokové nad-průměrné letech (2010, 2011) přimáhá přes tok Schlenze do Sály až 160 třík těžkých kovů, z toho připadá cca 95 % na Zn a 1,5 – 2 % na Pb a Cu.

U organických látek relevantních pro Labe nebylo možné provést žádnou kvantifikaci bodových vnosů. Odhaduje se, že s výjimkou TBT neexistují žádné aktivní bodové zdroje, které by byly pro znečištění relevantní v nadregionálním významu. Odhady emisí na německé straně pro PAU (MoRE 2013) uvádí, že průměrné čistiny odpadních vod se na celkové emisí v povodí Labe prakticky nepodílejí a podíl komunálních čistín odpadních vod nedosahuje ani 5 %. Lze předpokládat, že na české straně převládají porovnatelem poměry.

6.5 SEDIMENTY A STARÉ SEDIMENTY

Z kontextu managementu sedimentů vyplývá, že typ zdroje sedimenty je vždy charakterizován všemi znečišťujícími látkami, které jsou relevantní pro příslušnou oblast původu. Platí údaje uvedené v tabulce 6-2. Množství se zjišťovalo nejdříve jako objem (příloha A2-7), kvůli lépší porovnatelnosti s látkovými odnosy se hmotnosti udávají za předpokladu hmotnosti všech půdy 1,3 t/m². Na základě praktického a systémového hodnocení byl typ zdroje sedimenty přiřazen k následujícím strukturám, resp. úseknům toku:

- **Příčné překážky v české části povodí**

- **Výhonové pole a koncentrační hráze**

 - Výhonová pole se na českém úseku Labe vyskytují pouze na volné tekoucí úseku mezi Ústím nad Labem a státními hranicemi, případně ojediněle na některých úsecích regulovaného Labe. Pro management sedimentů jsou významné prostory za koncentračními hranicemi (obr. 6-7a), které představují potenciální prostor k ukládání říčních sedimentů s rizikem jejich remobilizace za vyšších vodních stavů a průtoků. Staré kontaminované sedimenty v těchto pro-

Obr. 6-6b: Vtok z důlní štoly Rothschildenberger Stolln do řeky Treibisch (S. Rohde, SMUL)

Obr. 6-7a: Koncentrační výhony na českém dolním Labi u Nebočad (J. Medek, Povodí Labe, státní podnik)
storech představují významný rizikový potenciál pro niže položené úseky toku Labe. Podrobná analýza vlivu téhoto staveb na režim partikulárních znečišťujících látek a hodnocení se nimi spojeného rizikového potenciálu pro niže položené úseky však musí být ještě provedena. V rámci pilotního projektu SedBiLa byl proveden průzkum úseku mezi ústím řeky Bíliny a česko-německými hranicemi zaměřený na kontaminací starých sedimentů a potenciál jejich remobilizace. V rámci téhoto průzkumu bylo na reprezentativních lokalitách prokázáno významně množství znečišťujících látek (DDT, HCB, PAU, těžké kovy) s velkým rizikem remobilizace, což představuje potenciální ohrožení i pro niže položené oblasti.

- Na vnitrozemském úseku Labe v Německu se nachází přes 6 600 výhonových polí, která při transportu jemných sedimentů hrají hlavní roli jako místa jejich průběžně akumulace, resp. ukládání. Na základě reprezentativní analýzy charakteristik (Hillebrand et al. in BfG 2013b), která vychází z regionálních, geomitrických, morfologických, hydrologicko-hydraulických a hydrotechnických kritérií, lze odvodit klasifikaci výhonových polí podle množství jejich jemných sedimentů. Celková hmotnost se odhaduje na 1,3 mil. tun. Průzkumy mobilizovatelnosti sedimentů byly provedeny na příkladu šesti výhonových polí. Tento namátkový vzorek je příliš malý, aby bylo možno přenést výsledky na všechna výhonová pole. I když jsou sledovaná pole v horizontálním i vertikálním profilu různorodé, byla přesto identifikována řada mobilizovatelných oblastí. Z této skutečnosti spojuji s pozorováním mobilizace sedimentů v důsledku povodní, které bylo prováděno v minulosti (Baborowski et al. 2004, Schwartz 2006; příloha A2-8), lze vypsat, že ve velké části stávajících výhonových polí může docházet k mobilizaci sedimentů, a jsou tudíž relevantní jako potenciál látkových odnosů. Přes 80 % výhonových polí charakterizovaných jako bahnatá pole se nachází pod ř. km 350. To umožňuje vytvořit prostorové jednotky, jak je znázorněno na obrázku 6-7b.

Postranní struktury Labe

- V údolní nivě českého Labe se nachází velké množství přirozených a technických postranních struktur, jako jsou odstavená ramena, tůne nebo přístavy (viz nápl. obr. B-A4-3 v příloze A4). Systematické zdokumentování jejich velikostí, polohy a návaznosti na tok prozatím chybí. Vznik a charakter téhoto struktur je dán jednak přirozeným historickým vývojem řeky, jednak souvisí s významným napřímováním toku při regulaci řeky, resp. při vybudování regulačních a vodních cesty. Řada téhoto starých ramen obsahuje staré sedimenty, které mohou být potenciálním zdrojem školivých látek s rizikem remobilizace za povodňových situací (např. okolí průmyslových oblastí u Pardubic, Kolín či Neratovic). Systematická analýza vlivu téhoto postranních struktur na režim partikulárních znečišťujících látek a s tím spojeného rizikového potenciálu pro niže položené úseky však dosud nebyla provedena. V rámci pilotního projektu SedLa probíhá průzkum rizika znečištění z průmyslových zdrojů na dvojici lokalit (pod Pardubicemi a pod Neratovicemi). Projekt je zaměřen na kvantifikaci již prokázaného výskytu znečišťujících látek relevantních pro Labe (těžké kovy, DDX, PCB, PAU) a potenciál jejich remobilizace.

- V údolní nivě německé části toku Labe leží více než 1 000 postranních struktur, tj. přístavů, odstavených ra-

men, zátocin a tůně. Bylo zdokumentováno 62 přístavů, kde se pro plavební účely provádí údržba, ovšem tyto přístavy jsou průtočné pouze za velmi vysokých průtoků a na celkové ploše mají poměrně malý po-
díl – cca 4,5 km². Postranní struktury zaujímají celkovou plochu cca 50 km², z toho 61 % připadá na struk-
tury o délce přes 500 m. Předmetem průzkumu bylo 17 postranních struktur Labe (ř. km 83,2 – 589), které se liší jednak svou polohou a vzdáleností od řeky, ale i napojením na hlavní tok. Na tomto základě byly vyvozeny následující předběžné závěry (Heise 2013): Reálným předpokladem jsou nánosy jemných sedimentů v rozsahu 0,3 – 1,5 m. Z toho vyplynul celkový potenciál odnosů cca 20 – 100 mil. t. Zvýšené riziko mobilizace lze jako tendenci očekávat u takových postranních struktur, které jsou zaplaveny minimálně při Qmax a

Obr. 6-7b: Příklad regionální koncentrace výhonových polí, pro které bylo provedeno modelování jemných sedimentů (zdroj: BfG)
jsou napojeny na Labe při \(Q_{\text{min}} \) nebo \(Q_a \) (zátoky, odsta-
věná ramena, popř. přístavy). Jejich podíl na celko-
vé ploše odpovídá cca 20 %. Přes 80 % těchto útvarů se nachází na úseku Labe od ř. km 300. Potenciál jej-
ých látkových odnosů je relevantní. **Obrázek B-A4-4**
znázorňuje na úseku Labe ř. km 333,2 – 568 příklady odstaveného ramena, starého ramena a zátoky s rele-
vantním potenciálem odnosů.

**Dolní tok Mulde včetně přítoku Schachtgraben /
Spittelwasser**
– Na toku Mulde pod údolní nádrži nejsou žádná
úložiště jemných sedimentů, která by stála za zmín-
ku. Na základě provedených průzkumů v rámci pro-
jektu „Snižení látkových odnosů v toku Spittelwasser“
(LAF 2013) byla pouze na jeho středním a horním toku
nalezena a prozkoumána nevelká úložiště jemných
sedimentů. Úložiště sedimentů, která byla popsána
ve starších průzkumech, se již nepodálo lokalizovat.
Relevantní potenciál odnosů pro níže položené vodní
toky nebyl zjištěn.

Hlavní tok Sály
– Na volně tekoucím úseku Sály, v úsecích mezi
zdymadly a v jezových úsecích Sály se jemnozrn-
né sedimenty nevyskytují ve významném množství.
Relevantní množství kohezií, kontaminovaných
sedimentů se nachází v jezových zdržích, přičemž
do průzkumů byly jako zástupné příklady zahrnuty
zejev objekty Rischmühle, Rothenburg (pod Bílým
Halištrom, Schlenze) a Calbe (pod ústím Bode)
(Claus et al. in BFG 2013b). Horní prahové hodno-
ty všech znečišťujících látek relevantních pro Sálu
jsou průběžně překračovány. V závislosti na poloze
vůči relevantním přítokům kategorie 2b vykazuje vyšší
zatížení znečišťujícími látkami značnou rozkolís-
nost. Odhaduje se, že na 12 plavebních stupních Sály
jakožto spolkové vodní cesty bylo před povodní v roce
2013 uloženo cca 140 000 t jemných sedimentů. Na
velká zdymadla Rothenburg, Asleben, Wettin a Calbe
připadá 80 % sedimentační plochy (viz obr. B-A4-5 v
příloze A4). Tyto jemné sedimenty jsou považovány
za potenciálně mobilní. Potenciál látkových odnosů
je relevantní. Oproti roku 2012 se jejich množství
zvýšilo cca o 19 000 t, v tomto období nebyly náno-
sy oděložovány. Toto množství odpovídá přibližně 15 %
celkového látkového odnosu Sály do Labe. Pod těmito
mobilními nánosy jsou uloženy případně až do hloub-
ky 1,70 m výrazně ustálené staré sedimenty, které jsou
klasifikovány jako nemobilizovatelné.

Postranní struktury Sály a její přítoky kategorie 2b
– Systematické průzkumy ukazují, že v postranních
strukturách splavného úseku Sály je uloženo cca
190 000 t jemnozrných sedimentů, z toho je cca 75 %
hodnoceno jako mobilizovatelné (GEOS 2013,
Univerzita Stuttgart 2013). Potenciál látkového odno-
su spojený s těmito postranními strukturami je tedy re-
levantní. V těchto sedimentech se odráží téměř celé
spektrum znečišťujících látek relevantních pro Labe
(*tab. 6-2*). Ke stěžejním bodům zatížení patří kvůli vy-
sokému podílu na celkovém množství mýslenské náho-
ny Wettin, Peišnitz a Holleben a staré rameno Calbe /
Tippelskirchen. Z přítoků kategorie 2b jsou k dispo-
zici výsledky k toku Schlenze a Bode. Schlenze
s cca 1 500 t nevykazuje žádná relevantní úložiště
sedimentů. V řece Bode bylo zjištěno cca 37 500 t
(např. jez Staßfurt, obr. B-A4-6). Z těchto sedimentů
je cca 75 % mobilizovatelných. Potenciál látkového od-
nosu dolního toku Bode je relevantní zejména kvůli vy-
sokému zatížení dioxiny / furany. U Bílého Halištrova je
na základě výsledků klasifikace nutné další vyjasnění.
Kvantitativní údaje jsou dosud k dispozici pouze pro
dílčí úseky, takže prozatím nelze provést žádné vyhod-
nocení.

Slapový úsek Labe
– Řada postranních prostor slapového úseku Labe
představuje trvalé úložiště jemných sedimentů, a to
až do hloubky 4 m (Schubert a Hummel 2008). Zde
uložené potenciály látkových odnosů překračují v zá-
vislosti na znečišťující látky roční látkové odno-
sy z vnitrozemského úseku Labe deseti- až více než
stonásobně. Potenciál látkových odnosů však není
relevantní, jelikož je vyloučeno, že by mohlo do-
jít k přirozené mobilizaci těchto výrazně ustálených
starých sedimentů. To se týká také části hamburské-
ho přístavu, kde nemohla být v důsledku struk-
turálních změn již pravděpodobně údržba nebo
kde byl přístavní provoz ukončen. Potenciál látkových
odnosů u srrových, recentních a potenciálně mobil-
izovatelných nánosů v postranních strukturách však
není podle odhadu relevantní vzhledem k celkovému
množství látkových odnosů, které se pohybuje ve sla-
povém úseku Labe.

6.6 **STARÉ EKOLOGICKÉ ZÁTEŽE NA TOKU**
Významná část znečišťujících látek, které se vy-
skytovaly ve vodě a sedimentech labského systému
před rokem 1990, přičemž část z nich se zde vysky-
tuje až dodnes, byly vypuštěny na plochách, dnes
označovaných jako kontaminovaná místa, lokality se
starými ekologickými zátežemi, staré nánosy / staré
skládky nebo zrušená důlní činnost, a odtud se dostá-
vály do vodních toků. Na řadě těchto ploch (následně
pod jednotným označením „staré ekologické záteže...
na vodních tocích") zůstaly po ukončení provozu kontaminované půdy, skládky odpadů a kontaminované podzemní vody. V případě, že se zde vyskytuje dostatečně velké množství mobilizovatelných znečišťujících látek, mohou tyto plochy představovat i nadále potenciální zdroj znečištění pro povrchové vody, a tím i pro jejich sedimenty.

Nejdůležitější souhrnné informace o stavu těchto velkých českých lokalit z pohledu managementu sedimentů lze shromát následovně:

- **Synthesia, a. s., Pardubice**: Areál o rozloze 12 km² je situován na pravém břehu řeky Labe, mezi Brozanským potokem a Černskou struhou. Dosud bylo v rámci sanací skládek odpadů z výroby odstraněno více než 170 000 tun odpadů. I když dosud nebyla zahájena aktivní sanace sazturované zóny horninového prostředí, výsledky analýzy monitoringu vod Labe za časy 2012 prokazují, že nedochází k průniku znečištění do povrchových vod. Ze znečišťujících látek relevantních pro sedimenty byl do Labe v minulosti vypouštěn arséna a rtuť.

- **Lučební závody Draslovka, a. s., Kolín**: Areál se nachází východně od vlastní stanice Kolín na levém břehu řeky Labe. Dlouhodobou čerpaní zkušeností byla prokázána hydraulická komunikace a migrace kontaminantů mezi levobřežní (Lučební závody Draslovka, a. s.) a pravobřežní (jimací území Tří Dvory – hlavní zdroj pitné vody pro Kolín (cca 30 000 obyvatel) části údolní nivy Labe. V letech 2011 – 2012 byla provedena odtěžba ohnisek znečištění v oblasti bývalých hal výroby kyanidů, rhodanidů a budovy výroby AKH a byla provedena výstavba podzemní těsnicí stěny. Tato stěna v kombinaci s odčerpáváním znečištěných podzemních vod zamezí šíření této staré kontaminace podzemními vodami mimo areálu a představuje zároveň ochranu proti šíření případných havarijních úniků podzemními vodami i do budoucna. Ze znečišťujících látek relevantních pro sedimenty hráli v této lokalitě významnou úlohu polyaromatické uholídlovky (PAH).

- **SPOLCHEMIE, a. s., Ústí nad Labem**: Areál Spolchemie se nachází v centru Ústí nad Labem na rozloze cca 52 ha. Řeka Bílina je od hranice areálu Spolchemie vzdálena cca 100 m, řeka Labe cca 1 km. V areálu se nachází kombinované znečištění nesaturované a saturované zóny horninového prostředí. Vzhledem k charakteru kontaminace je problématika odstranění této ekologické zátěže řešena po dvou liních, zvláště pro kontaminované zeminy a stavební objekty a zvláště pro kontaminovanou podzemní vodu. Sanační práce byly a jsou realizovány na základě samostatných prováděcích projektových dokumentací pro jednou skupinu objektů.
notlivé lokality nesaturované zóny hominímového prostředí a vymezené kontaminační mraky saturované zóny hominímového prostředí. V kontextu nakládání se sedimenty jsou relevantní chlorované pesticidy, PAU, kovy (především Hg, ale také Pb, Zn, Cu a As).

KOVOŠROT GROUP CZ, a. s., lokalita Děčín: Zájmová lokalita o celkové rozloze cca 6,4 ha se nachází při jižním okraji města Děčína. Lokalita leží na levém břehu Labe, jihovýchodní a jižní hranici tvoří tok řeky Labe. Hlavním kontaminantem jsou ropné látky (nepolární extrahovatelné látky, popř. \(\text{C}_{10} - \text{C}_{20} \), resp. ropné uhlovodíky, především hydraulické, mazací a motorové oleje). Na lokalitě v Děčíně bylo navrženo a probíhá ochranná sanační čerpaní podzemních vod s následnou sanací saturované zóny hominímového prostředí do odstranění fáze ropných látek z hladiny podzemních vod. Na základě současného stavu znalostí nelze určit specifický význam této lokality v kontextu nakládání se sedimenty.

Na německé straně byla v souvislosti s koncepcí pro nakládání se sedimenty zpracována a aplikována metodika k systematickému prověřování relevance starých ekologických zátěží v blízkosti toku (příloha A2-10), pokud to umožňoval soubor dat. Výsledky rešerší jsou k dispozici v odborných institucích německých spolkových zemí.

Nejdůležitější závěry o významných starých ekologických zátěžích z pohledu managementu sedimentů na vodních tocích v německé části povodí lze shrnout následovně:

- **V relevantním koridoru toku německé části Labe, řeky Sály (od města Bad Dürenberg), Sjednocené Mulde a jejich zdrojnic Zwickerau a Freiberger Mulden, Havoly, Bílého Halštrova, Bode, Schlenze, Černého Halštrova a Triebsch se nachází kolorem 2 500 starých ekologických zátěží a ploch s podezřením na staré ekologické zátěže.

- **Cesta vnou „sedimenty v povrchových vodách“** byla v rámci průzkumů starých ekologických zátěží doposud posuzována explicitně jen ve výjimečných případech, takže nebylo možné plošně získat požadované údaje o potenciálu látkových odnovu pro všechny 29 znečišťujících látek relevantních pro sedimenty s přesným uvedením lokality a ukazatelů. Typy a množství znečišťujících látek na těchto plochách byly proto udávány orientačně na základě odborných vědomostí, resp. nebylo možné je uvést vůbec. V jednotlivých případech je nezbytné ještě vyjasnění, viz kap. 7.

- **Možnost mobilizace znečišťujících látek relevantních pro sedimenty** (cesty vnou: eroze, eluce, staré sedimenty) ve významném prokazatelném množství látkových odnovách na relevantních profilích se podle odhadu odborníků z příslušných spolkových zemí předpokládá pouze u několika velkých projektů (s výjimkou ekologických velkopropojení; viz FGG Elbe 2014). V ostatních případech nelze podle odhadu spolkových zemí předpokládat, že by staré ekologické zátěže na toku mohly být zdrojem látkových odnov relevantních pro nakládání se sedimenty v labském systému.

- **Emise znečišťujících látek vycházející z ploch mimo tyto velké projekty (prostřednictvím odpadních, průsakových nebo podzemních vod) mohou ojediněle vést ke zhoršení kvality sedimentů v blízkosti zdroje.** Zda je tento aspekt pro nakládání se sedimenty důležitý a zda to při celkovém posouzení vyplýne následkem sčítání významného vliv z nadregionálního hlediska, nelze prozatím posoudit.

- **Pro současný stav zpracování cca 40 lokalit se starými ekologickými zátěžemi / starými náznany** (bez velkopropojení) by mělo být zjištěno na základě detailní prověrky (kontrolní krok 2), zda dochází k transportu znečišťujících látek do povrchových vod a zda v blízkosti zdroje jsou, resp. mohou vzniknout uložitelné těžké látky (FGG Elbe 2014).

- **Velké lokality v blízkosti toku** (s výjimkou ekologických velkopropojení) zaujímají vzhledem ke zvýšené relevanci starých zátěží zvláštní postavení při řešení starých ekologických zátěží i pro management sedimentů. U těchto zájmových velkopropojení se jedná o bývalé chemické nebo duální podniky, kde je zatížení znečišťujícími látkami komplexní. Tyto lokality byly v minulých letech podrobeny rozsáhlým průzkumům, přičemž dnes je značná část sanací již ukončena. K lokalitám významných z hlediska managementu sedimentů předaly spolkové země informace o situaci a stavu zpracování. Podrobný přehled, zčásti formou katalogových listů, je obsažen v koncepci FGG Elbe pro nakládání se sedimenty (FGG Elbe 2014).

- **Podle současného stavu znalostí** (1) nelze v podniku na starou ekologickou zátěž Fahlberg-List v Magdeburku vyloučit relevantní negativní ovlivnění sedimentů, ježkož z ploch ohrožených erozi a nezpevněných břehových úseků může docházet k přímému vnosu HCH do Labe, (2) ekologický velkopropojekt Magdeburk-Rothensee byl hodnocen pro management sedimentů jako nevýznamný, (3) u ekologického velkopropojekta Buna Schkopau nelze vyloučit, že by se z toku Laucky
mohly docházet do Sály v relevantním množství erodovatelně staré sedimenty kontaminované Hg, (4) ekologický velkoproudý Bitterfeld-Wolfen byl pro management sedimentů vyhodnocen jako nevyznamný (LAF 2013), (5) areál velkoproduktu Berlín je v důsledku rozsáhlych sanací půdy a starých sedimentů a probíhajících sanací podzemních vod posuzován pro management sedimentů jako nevyznamný, (6) pro uranové podnky Wismut Uranerzbergbau, Komplex Crossen a (7) Komplex Schlema lze souhnně konstatovat, že i po ukončení rozsáhlych sanací opatření (hlavní znečišťující látky U, As) bude nezbytné i nadále provádět čištění průsakových a průřílových vod, resp. čištění důlních vod, (8) pro důlní ploty tuší „Hütte Freiberg“, (9) „Hütte Halsbrücke“ a (10) „Hütte Muldenhütten“ ekologického velkoproduktu Saxonia (hlavní znečišťující látky Pb, Cd, Cu, Zn, Ni, Cr, As) lze konstatovat, že plánovaná zabezpečovací a sanační opatření jsou ukončena, zatímco (11) na důlní ploše stáčky „David“ nebyla dosud provedena sanace náplavových výsypků. Cílem sanačních opatření velkoproduktu Saxonia je snížit vypouštěné znečištění do toků Freiberger Mulde (Moldavský potok) a přes důlní štoly Rothsönbercher Stoll do řeky Triebisch.

6.7 JINÉ ZDROJE
Pro další zdroje byl zpracován první předběžný odhad jejich potenciální významnosti pro sedimenty na základě bilance vnosů vybraných znečišťujících látek do německého vnitrozemského úseku Labe v letech 2006 – 2008 (Fuchs et al. 2010; MoRE 2013). V rámci zpracování těchto bilancí jsou vedle bodových zdrojů (komunálních a průmyslově či průmyslové odpadních vod, zrušené doly) bilancovány pro těžké kovy

Tab. 6-5: Významnost dalších cest emisí v povodí Labe (združ: MoRE 2013)

<table>
<thead>
<tr>
<th>Látka</th>
<th>Ostatní cesty vnosu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadmiově</td>
<td>8E, 9G, 10D</td>
</tr>
<tr>
<td>Méd</td>
<td>39U, 12E, 12G</td>
</tr>
<tr>
<td>Niklově</td>
<td>43G, 18E, 18D</td>
</tr>
<tr>
<td>Zinek</td>
<td>29U, 6E, 4D</td>
</tr>
<tr>
<td>Chrom</td>
<td>56E, 16D</td>
</tr>
<tr>
<td>Rtuť</td>
<td>33D, 16E, 16G, 14U</td>
</tr>
<tr>
<td>Olovo (také: benzo(a)pyren, anthracen)</td>
<td>39U, 18B, 16O, 13A</td>
</tr>
</tbody>
</table>

1 Látky účinně právních předpisů, týkajících se předmětu ochrany „důležité zdraví“ (příloha A2-3, tab. T-A2-3-1b) a nebo prioritní nebezpečné látky (ES 2008b), viz tab. 3-1
2 A – atmosférická depozice, B – provoz sportovních lodí / ocelové vodní stavby, D – drenáže, E – eroze, G – podzemní vody, O – povrchový odtok, U – urbánní systémy; uváděné jsou významné cesty vnosu v klasifikaci potrubí, které doplňují podoby bodových zdrojů přibližně na 90 %; zvlášť dominantní podoby (> 20 %) jsou vyznačeny tučně cesty vnosů atmosférická depozice, eroze, podzemní vody, povrchový odtok, drenáže a urbánní systémy. Výsledky byly zpracovány pro ukazatele Cd, Cu, Ni, Zn, Cr, Hg, Pb a PAU. U nebilancovaných, ovšem v kontextu managementu sedimentů relevantních znečišťujících látek pro Labe lze s výjimkou As vycházet ze skutečnosti, že recentní vnosy přes tyto cesty nepýchají ve relevantním množství, resp. že jsou podchyceny prostřednictvím „starých ekologických zářížů na toku“ v rámci cest vnosu eluce a eroze. Pro PAO odpadá v bilancování cesta vnosu zrušená těžební činnost, ovšem navíc se zde jako cesta vnosu promítá „provoz sportovních lodí / ocelové vodní stavby“. V tabulce 6-5 jsou shrnuty základní informace o nebovodních zdrojích. Cesta vnosu „urbánní plochy“ přitom plní specifickou úlohu. Touto cestou se do vodního prostředí dostává cca 40 % vnosů PAU, 40 % medi, 30 % zinku, 20 % olova a 15 % rtuti. Tento výsledek je většinou také na základě aktuálně provedených průzkumů, např. pro povodí řeky Vezery (Fuchs et al. 2013). V povodí Vezery (Weser) pochází ze zemědělství 90 % vnosů jiných sedimentů (eroze, drenáže), cca 10 % vnosů připadá na urbánní plochy. Při posuzování vnosu partikulárně vázaného zinku se poměr kvůli vysokému zatížení v urbánních oblastech téměř obrácí, neboť tyto vno- sy odsud pocházejí téměř z 80 %. Zanedbatelně nej- sou ani vnosy jiných sedimentů, pocházející z urbánních ploch. V první hvězdu aproximací lze vycházet z předpokladu, že urbánní poměry jsou v české části povodí porovnatelné, podrobné studie však neexistují.

6.8 SHRnutí Analýzy Rizik Ve Vazbě Na Zdroje
Vyhodnocení analýzy rizik ve vazbě na zdroje v relevantních důlích povodí shrnuje tabulka 6-6. Údaje v této tabulce jsou východiskem pro doporučené postupy v kapitole 7.2 a základem pro stanovení jejich priorit. Za tímto účelem byly znečišťující látky přiřazeny k důlím povodím a typům zdrojů zne- čištění – bodové zdroje (odpadní vody, ukončená těžba), sedimenty / staré sedimenty, staré ekologické zátěže na toku a urbánní plochy (viz kap. 6.1). Východiskem jsou znečišťující látky, které byly pro- kázány v plaveních na referenčních profilích v koncentracích C > HPH. Otázek před potenciálně relevantní látkou (C > HPH) znamená, že prozatím nebyl proveden odhad potenciálu látkových odnosů. To se týká např. údajů o znečišťujících látkách ve starých ekologických zátěžích a starých sedimentech na toku Bílého Hašťova, kde byl v kontextu této koncepce prozatím hodnocen jen dolní tok. Na řece
<table>
<thead>
<tr>
<th>Dílčí povodí</th>
<th>Odpadní voda</th>
<th>Bodové zdroje – ukončená těžba</th>
<th>Staré ekologické zátěže</th>
<th>Urbánní plochy</th>
<th>Sedimenty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Střední Labe</td>
<td>Hg, Pb, Cu, Zn, Cr, Ni</td>
<td>–</td>
<td>Hg, As, benzo(a)pyren, anthracen, Σ 5 PAU, fluoranthan</td>
<td>??</td>
<td>Hg, Pb, HCB, benzo(a)pyren, anthracen, Σ 5 PAU, Ni, p,p'-DDT, p,p'-DDE, fluoranthan, PCB, (Cd, HCH)</td>
</tr>
<tr>
<td>Dolní Labe</td>
<td>Hg, Pb, As, Cu, Zn, Ni</td>
<td>–</td>
<td>Hg, Pb, As, benzo(a)pyren, anthracen, Σ 5 PAU, Zn, fluoranthan, p,p'-DDT, p,p'-DDE, (α-HCH, β-HCH, γ-HCH)</td>
<td>??</td>
<td>Hg, Pb, As, HCB, Cu, Ni, p,p'-DDT, p,p'-DDE, PCB-101, -180, fluoranthan, (Cd)</td>
</tr>
<tr>
<td>Horní Vltava</td>
<td>Hg, Zn, (Cd)</td>
<td>–</td>
<td>–</td>
<td>??</td>
<td>úložiště sedimentů nejsou v nad- regionálním měřítku relevantní</td>
</tr>
<tr>
<td>Dolní Vltava</td>
<td>Hg, Pb, Cd, As, Zn, Ni</td>
<td>–</td>
<td>??</td>
<td>??</td>
<td>Hg, Pb, Ni, p,p'-DDT, p,p'-DDE, PCB-138, -153, -180, fluoranthan, (Cd)</td>
</tr>
<tr>
<td>Berounka</td>
<td>Hg, Pb, Cd, As, Cr, Ni</td>
<td>–</td>
<td>Hg, Pb, As, HCB, Ni, Zn, p,p'-DDT, p,p'-DDE, PCB-138, -153, fluoranthan</td>
<td>??</td>
<td>Hg, Pb, As, HCB, Ni, Zn, p,p'-DDT, p,p'-DDE, PCB-138, -153, fluoranthan, (Cd)</td>
</tr>
<tr>
<td>Bílina</td>
<td>–</td>
<td>–</td>
<td>As</td>
<td>??</td>
<td>As, (Hg, Pb, Cd, HCB, benzo(a)pyren, Σ 5 PAU, Zn, Cu, Ni, p,p'-DDT, p,p'-DDE, PCB-101, -180, fluoranthan)</td>
</tr>
<tr>
<td>Ohře</td>
<td>–</td>
<td>–</td>
<td>??</td>
<td>??</td>
<td>As, Ni, (Hg, Pb, p,p'-DDT, p,p'-DDE, PCB-101, -180, fluoranthan)</td>
</tr>
<tr>
<td>Triebisch</td>
<td>–</td>
<td>Cd, Zn</td>
<td>–</td>
<td>–</td>
<td>relevantní úložiště jených sedimentů nelze prokázat</td>
</tr>
<tr>
<td>Zwickauer Mulde</td>
<td>–</td>
<td>As, Ni</td>
<td>Ni</td>
<td>α-HCH, γ-HCH, TBT, p,p'-DDT, p,p'-DDE, Pb, benzo(a)pyren, anthracen, Cu, Zn</td>
<td>Cd, Pb, As, o-HCH, γ-HCH, benzo(a)pyren, anthracen, TBT, Zn, Cu, Ni, p,p'-DDT, p,p'-DDE, (Hg, fluoranthan)</td>
</tr>
<tr>
<td>Freiberger Mulde (Moldavský potok)</td>
<td>–</td>
<td>Cd, Pb, As, Zn, Cu</td>
<td>Cd, Pb, As, Zn, Cu</td>
<td>α-HCH, β-HCH, γ-HCH, dioxiny / furany</td>
<td>Cd, Pb, As, o-HCH, γ-HCH, TBT, Zn, Cu, Ni, p,p'-DDT, p,p'-DDE, (Hg, fluoranthan)</td>
</tr>
<tr>
<td>Dolní tok Mulde s přítokem Spittelwasser</td>
<td>–</td>
<td>–</td>
<td>α-HCH, β-HCH, γ-HCH,</td>
<td>–</td>
<td>relevantní úložiště jených sedimentů nelze prokázat</td>
</tr>
<tr>
<td>Bílí Hallštrov bez</td>
<td>–</td>
<td>–</td>
<td>??</td>
<td>??</td>
<td>Hg, Cd, Pb, As, benzo(a)pyren, anthracen, Σ 5 PAU, TBT, Zn, Ni, p,p'-DDT, p,p'-DDE, p,p'-DDE, fluoranthan</td>
</tr>
<tr>
<td>Siberie</td>
<td>–</td>
<td>Cd, Pb, Zn, Cu</td>
<td>–</td>
<td>–</td>
<td>relevantní úložiště jených sedimentů nelze prokázat</td>
</tr>
<tr>
<td>Moldau s přítokem Štolš</td>
<td>–</td>
<td>–</td>
<td>dioxiny / furany</td>
<td>Pb, fluoranthan</td>
<td>Pb, dioxiny / furany, p,p'-DDT, p,p'-DDE, fluoranthan, (Hg, HCB, Ni)</td>
</tr>
<tr>
<td>Sála</td>
<td>Ni</td>
<td>–</td>
<td>Hg</td>
<td>Pb, benzo(a)pyren, anthracen, Σ 5 PAU, Zn, fluoranthan</td>
<td>Hg, Cd, Pb, o-HCH, β-HCH, γ-HCH, benzo(a)pyren, anthracen, Σ 5 PAU, TBT, dioxiny / furany, Zn, Ni, p,p'-DDT, p,p'-DDE, p,p'-DDE, fluoranthan, (HCB)</td>
</tr>
<tr>
<td>Vnitrozemský úsek</td>
<td>–</td>
<td>–</td>
<td>α-HCH, β-HCH, γ-HCH</td>
<td>Pb, benzo(a)pyren, anthracen, Σ 5 PAU, Zn, fluoranthan</td>
<td>Hg, Cd, Pb, As, o-HCH, β-HCH, γ-HCH, PeCB, HCB, benzo(a)pyren, anthracen, Σ 5 PAU, TBT, dioxiny / furany, Zn, Ni, p,p'-DDT, p,p'-DDE, p,p'-DDE, PCB, fluoranthan</td>
</tr>
<tr>
<td>Slapový úsek Labe</td>
<td>Cd, Hg, Ni, (Pb)</td>
<td>–</td>
<td>As, Cu, Zn</td>
<td>–</td>
<td>TBT, (Hg, Cd, HCB, dioxiny / furany, p,p'-DDT, p,p'-DDE, p,p'-DDE)</td>
</tr>
</tbody>
</table>
U prokázané kontaminace sedimentů řadově v relevantním množství (C > HPH, % F > 10 %) musí nebo musel existovat vnější zdroj. Dobře odhadnout se dá na základě současných vědomostí situace u bodových zdrojů. Políčka ve sloupcích „odpadní vody“ a „bodové zdroje – úkončená těžba“ v tabulce 6-6 obsahují látky, které byly v příslušném dílčím povodí prokázány v bodových zdrojích řadově v relevantním množství. V souvislosti se spektrum látek, přícházejícími v úvahu, lze pro německou část povodí vymezit i cestu vnosu „urbánní plochy“. Zde je uveden výčet látek ze spektra, přícházejícího u tohoto (Cu, Zn, Pb, PAU), pro které připadají sedimenty v úvahu jako zdroj v dotčeném dílčím povodí. Pro českou část povodí nebyl dosud zpracován odhad ostatních zdrojů, tedy ani urbánních ploch. Větši nejstoty existují u typu zdroje „staré ekologické zátěže“. Zde jsou jako první uvedeny látky, u kterých existují v kontextu velkých podniků a lokalit uvedených v kapitole 6.6 poznátky o jejich významnosti pro vodní toku. Pro českou část povodí jsou k dispozici první odhady ze středního a dolního Labe, nikoliv však pro přítky. Také v německé části povodí není inventarizace ještě ukončena (kap. 6.6). Proto nelze prozatím dát definitivní odpověď na otázku, které staré ekologické zátěže na toku připadají v úvahu jako zdroj znečišťujících látek v sedimentech. Ve sloupci „staré ekologické zátěže“ je v rubrice „?“ na základě současná stavu znalosti uvedeno spektrum látek, jež nelze zcela jistě vyloučit (viz FGG Elbe 2014).

7. NÁVRHY NA TRVALE UDRŽITELNÉ NAKLÁDÁNÍ SE SEDIMENTY A UKLÁDÁNÍ ODTEŽENÝCH NÁNOSŮ

Management rizika je plánovitý postup při řešení rizik. Management odtežených nánosů má s tématem sedimentů specifickou spojitost. Proto byly navrženy zásady pro budoucí management odtežených nánosů (kap. 7.6). V závěru kapitol jsou představeny možnosti managementu jemných sedimentů, zde především z kvalitativního hlediska, ale také z hlediska hydromorfologického (kap. 7.7 a 7.8).

7.1 KRITÉRIA VÝBĚRU A STANOVĚNÍ PRIORIT DOPORUČENÍ

V souvislosti se stanovením priorit jsou použita jak obecná kritéria, platná pro všechny aspekty, tak i kritéria specifická pro jednotlivé aspekty. Ze specifických kritérií pro jednotlivé aspekty a z obecných kritérií vyplývá význam sektoru ve vazbě na dílčí aspekt kvality, hydromorfologie nebo plavby, viz kap. 7.2 – 7.4. Pořadí dotýkající se všech tří aspektů představuje doplňující posouzení na základě obecného kritéria č. 3. Obecná kritéria č. 1 – 4 zvyšují význam hodnoceného opatření, kritéria č. 5 – 7 tuto významnost tendenčně snižují.

1. Obecná kritéria
1. Je třeba dávat přednost řešení problému u zdroje, resp. odstranění příčiny.
2. Pokud příčinný zdroj již neexistuje, mělo by řešení následovat pokud možno co nejbližší ke zdroji („zemát schody odshora dolů“).
3. Rezonační účinek č. 1: Doporučení se projevuje pozitivně na jeden nebo oba další aspekty.
4. Rezonanční účinek č. 2: Jednorázová investice bude mít za následek tvratní nížší náklady.
5. Stupeň obtížnosti / náročnost realizace.
7. Využívání kritérií „absence úměrných možností řešení“ se použije jen ve výjimečném případě a pouze při dobře zabezpečeném / odůvodněném stavu vědomostí.

Při sestavování programů opatření pro 2. plán povodí je třeba celkově prověřit aspekt technické a ekonomické proveditelnosti.

(2) Aspekt kvality

Do aspektu kvality se promítá ochrana životního prostředí a lidského zdraví (kap. 3, příloha A2-3). U znečišťujících látěk relevantních pro Labe bylo provedeno rozlišení na dvě skupiny. Skupina 1 obsahuje všechny látky, pro které existuje explicitní ustanovení na ochranu lidského zdraví, a prioritní nebezpečné látky, skupina 2 všechny ostatní [viz tab. 3-1]. Ke skupině 1 patří 14 z celkem 29 relevantních látěk / látkových skupin, tj. arsen, kadmium, rtuť, olovo, α-, β-, γ-hexachlorcyclohexan, hexachlorbenzen, pentachlorbenzen, benzo(a)pyren, anthracen, Σ 5 PAU, tributylicín a dioxygen / furany. S ohledem na toto rozdělení jsou uplatňována následující kritéria výběru a stanovení priorit pro doporučené postupy:

1. Kvantitativní význam určitého typu zdroje znečištění v relevantní oblasti původu (tab. 6-6). Za tímto účelem bylo v německé části povodí Labe prostřednictvím údajů v tabulce 4-6 stanoveno pro každou látku / látkovou skupinu pořádá jednotlivých typů zdrojů na základě kritérií látkových odnosů, resp. potenciálu odnosů a možností mobilizace. Výsledky jsou v podrobnostech obsaženy v koncepci FGG Elbe pro nakládání se sedimenty (FGG Elbe 2014). Na české straně byl proveden předběžný odborný hod. Čím vyšší příchu v pořádá zaujímá daný zdroj typ zdroje znečištění, tím naléhavější je příslušné doporučení.

2. Počet relevantních znečišťujících látěk skupiny 1 na jeden zdroj znečištění. Čím více látěk tohoto druhu zdroj vykazuje, tím naléhavější je doporučený postup.

3. Počet relevantních znečišťujících látěk na jeden zdroj znečištění; čím více látěk zdroj vykazuje, tím naléhavější je doporučený postup.

(3) Aspekt hydromorfologie

Účelný management sedimentů začíná u příčin. Obdobně jako u kvalitativního hlediska, které sleduje cestu odstranění zdroje znečištění, aby tak skončilo neustálé nákladné ošetřování symptomů, zaměřuje se přístup ke zlepšení hydromorfologické situace na vnitrozemském úseku Labe na příčiny narušujících vlivů. V komplexním systému vzájemného působení hydromorfologických jevů platí, že na základě nálezu (hodnocení aktuálního stavu) jsou identifikovány charakteristické příčinné působící mechanismy, které se seřadí podle příslušných doporučených postupů a stanoví se jejich priority. Středem pozornosti zopaková nejsou symptomatické důsledky (deficit ve strukturu toku, diverzita), nýbrž narušený režim sedimentů toku Labe. Hlavní pozornost se proto zaměřuje na přírozenou dynamiku fluviálních procesů a antropogenní zásahy, které ji narušují. Změny v klíčových indikátorových parametrech a změny, které ovlivňují fluviální procesy v širším měřítku, mají vyšší prioritu. V tomto smyslu má mj. mimořádný význam oba indikátorové ukazatele průchodnost pro sedimenty a bilance sedimentů / průměrná změna nadmořské výšky dna, resp. ovlivnění hydrologického režimu (viz kap. 5). Prioritní jsou na české i německé straně takové postupy, které umožňují dosažení pozitivních změn v těchto parametrech, mají synergické účinky na hydromorfologický stav v dalších parametrech a dlouhodobě pozitivně ovlivňují dynamiku fluviálních procesů na rozsáhlých částech toku.

Uplatňována jsou následující kritéria výběru a stanovení priorit pro doporučené postupy:

1. Pozitivní vliv na oba nebo jeden z klíčových indikátorů (průchodnost pro sedimenty a průměrná změna nadmořské výšky dna / bilance sedimentů, resp. ovlivnění hydrologického režimu).

2. Pozitivní vliv na další indikátorové ukazatele v jejich hydromorfologické výraznosti.

3. Potenciální účinku na dlouhých úsečích toku (nadregionální význam, stupnice povodí).

4. Zaměření na oblasti, které byly zařazeny do tříd 3, 4 a 5.

5. V pátém kroku jsou uplatňována obecná kritéria č. 1 – 7.

(4) Aspekt plavby

Hlavním kritériem posuzování účinnosti opatření pro plavbu na volně tekoucím vnitrozemském úseku Labe a jeho volně tekoucích splavných přítocích je zachování, resp. obnova příslušných cílů údržby (kap. 4.4). Opatření k aspektu kvantity mají prioritní význam. Za předpokladu, že plně fungující regulační systém je
schopen zajistit rovnoměrný transport sedimentů a zároveň zachovat plavební cestu v řádném stavu dle jeho určení, platí pro management sedimentů v souvislosti s plavbou následující priorit:
1. zachování, resp. obnova regulačního systému;
2. optimalizace regulačních vodních staveb (alternativní formy staveb);
3. modifikace regulačních parametrů (požadované výšky těchto hydrotechnických staveb, referenční vodní stav);
4. nakládání s dnovými splaveninami v řece (ukládání / přemístování nebo přidávání materiálu);
5. odttěžování nánosů (prohrábkys).

Vedle toho jsou pro regulovaný úsek Labe a regulované úsky splavových přitoků významné tyto body:
6. stabilizace podčelného profilu dna v regulovaném úseku sloužící k vyhodnocení kvantity a pohybu splavenin;
7. stabilizace vodních děl (jezy, plavební komory).

Pro slavový úsek Labe má z hlediska plavby v kontextu povodí primární význam aspekt kvality. Zde vedle obecných kritérií platí:
1. Sanace zdrojů znečištění jsou nezbytné především pro ty látky, u kterých je překročení příslušných orientačních hodnot pro odttěžované nánosy nevyšší, tj. zpravidla překročení hodnot v ustanovení GÜBAK (2009). Vzhledem ke směšování limnických a mořských, resp. estuárních plavien a sedimentů ve slavovém úseku Labe to platí zejména pro plaveniny z úseku Středního Labe na jezu Geesthacht (zatižení vnou). Zdůraznit je třeba takové látky, u kterých je překročení příslušných hodnot pro odttěžované nánosy nevyšší, resp. u kterých byly při monitorování zjištěny dopady zejména na biotu (relevantnost látě).
2. U sanací zdrojů znečištění ve smyslu správy povodí záleží v prvé řadě na tom, aby byly stanoveny pokud možno velké odnysy, aby v průběhu toku nedoráhálo k dalšímu směšování / rozdělování (relevantnost opatření).

Pokud lze prošetřdncitvím jednoho opatření ob-sáhnut několik relevantních látek, je výsledkem rezonanční účinek, který se při stanovení priorit používá jako třetí hledisko.

7.2 DOPORUČENÉ POSTUPY Z HLEDISKA KVALITY

Z kvalitativního hlediska lze na základě analýzy v kapitole 6 doporučit operativní postupy v podstatě v oblastech (1) snížení / sanace bodových zdrojů, (2) snížení / sanace starých ekologických záťáží, (3) odstranění mobilizovatelných úložiští starých sedimentů, nakládání s jemnými sedimenty v toku ve spojitosti s optimalizací strategií údržby pro různé účely využívání vod, (4) snížení vnosů kontaminovaných jemných sedimentů z dalších zdrojů a (5) využívání a management míst, kde se ukádají látky.

Tabulka 7-1 obsahuje doporučené postupy, které byly podle současného stavu vodomostí odvozeny na základě výše uvedených kritérií ve vazbě na jednotlivé zdroje. Cílené využívání míst, kde se ukládají sedimenty, nebylo do tabulky zařazeno, jelikož se tato kritéria zde nedají aplikovat přímo. Přesto jsou však dále diskutována. Na stručný popis jednotlivých typů zdrojů znečištění vždy navazuje souhrnné hodnocení.

(1) Bodové zdroje
Vnosy z vypouštěného znečištění z komunálních a průmyslových zdrojů uvedené v českém registru PRTR dosahovaly v roce 2011 u všech těžkých kovů a arsenu necelych 5 % celkového látkového odno-su vztaženého na bilanční profil Hřensko / Schminka. Doporučené postupy se vztahují na jednotlivé zdroje. Na německé straně není třeba v kontextu této konceptu pro nakládání se sedimenty předkládat pro vypouštěné komunální a průmyslové odpadní vody žádné doporučené postupy.

Jako důsledek staré důlní činnosti existují na německé straně aktivní relevantní bodové zdroje v dílních povodích Triebisch, Mulde (v povodí Zwickauer a Freiberger Mulde) a v povodí Sály (štola Schlüsselstollen). Kompletní odstranění velkých zdrojů z bývalé těžby, které byly identifikovány jako významné (např. Schlüsselstollen, PLEJADES 2013), nelze provést z různých komplexních důvodů (náklady, životní prostředí, bezpečnost důlního prostředí). Probíhající a nová opatření na minimaliza-cii rizika, jako je i případné uzavření menších zdrojů, jsou příspěvkem ke snížení kontaminace sedimentů Cd, Pb a As (skupina 1 znečišťujících látek) a také Zn, Cu, a Ni (skupina 2). Do kontroly úspěšnosti mimi-nimalizace rizika je proto třeba zahrnout cestu vnou „sedimenty v povrchových vodách“. Z hlediska povodí jsou všechny lokality velmi významné. V nejlepším případě by bylo účelné provést odstupňování mezi Freiberger Mulde (Moldavský potok), řekou Triebisch a štolou Schlüsselstollen (větší význam) na jedné straně a Zwickauer Mulde na straně druhé.

(2) Staré ekologické zátěže
Na české straně se v úseku toku Labe mezi...
Pardubicemi a Děčínem jedná o známé velké lokalitě chemického a kovožeracího průmyslu, kde byly rozsáhlé sanační práce již skončeny, příp. trvají nebo jsou plánovány (viz kap. 6.6). Tato opatření by měla být dále rozpracována a případně by měla být zvýšena jejich efektivnost se zřetelem na cestu vnosu „sedimenty v povrchových vodách“. Pro potenciálně relevantní lokality na přítocích nebylo dosud provedeno žádné vyhodnocení.

U známých starých ekologických zátěží s nadregionálním významem na německé straně se jedná o bývalé velké areály dolů nebo chemického průmyslu. U přibližně 40 potenciálně relevantních starých zátěží na toku nebylo hodnocení dosud ukončeno. Zde bude třeba provést kontroli krok 2, který se předpokládá v německé metodice hodnocení.

Stejně jako v případě bodových zdrojů ze staré těžební činnosti se v Německu provádějí již řadu let sanační opatření také u velkých starých ekologických zátěží v oblasti těžby. Z tétoho lokalit pochází zatížení sedimentů Cd, Pb a As (skupina 1) a Cu, Ni a Zn (skupina 2). Možnost komplexní eliminace těchto zdrojů se ze současného pohledu nerýsuje, důsledné prověření účinku těchto zdrojů pro cestu „sedimenty v povrchových vodách“ však ještě chybí (viz kap. 6.6). Prohlašující opatření k minimalizaci rizika by měla pokračovat a případně – s pohlodem na aktivním cestu „sedimenty v povrchových vodách“ – by měla být zvýšena jejich efektivnost. Z pohlodu povodí je význam těchto lokalit velký, avšak menší než u odpovídajících aktivních bodových zdrojů. Diferenciaci jejich významu pro management sedimentů mezi těmito velkými lokalitami se nejeví jako účelná.

Také v bývalých velkých podnicích chemického průmyslu v Německu se již mnoho let provádějí sanační práce a opatření k minimalizaci rizika. Tato opatření by měla pokračovat a případně – s pohlodem na aktivním cestu „sedimenty v povrchových vodách“ – by měla být zvýšena jejich efektivnost. Tyto lokality jsou aktuálně prokazatelnou příčinou vysokeho zatížení sedimentů Hg, α-, β-, γ-HCH a dioxiny / furanu (všechen ve skupině 1). Výhledy na úspěšnou eliminaci těchto zdrojů se od sebe liší, viz tab. 7-1. Z hlediska povodí jsou všechen lokatly velmi významné, odstupňování není účelné.

(3) Úložiště starých sedimentů a nakládání s jemnými sedimenty
Úložiště starých sedimentů Labe (příčně překážky, koncentrační hráze, výhonová pole, postranní struktury) hrají pro všechny relevantní znečišťující látky významnou roli.

V postranních strukturách Labe pod Pardubicemi a pod Neratovicemi byly prokázány lokality se zvýšeným výskytmi znečišťujících látek relevantních pro Labe (těžké kovy, DDX, PCB, PAU) v kombinaci se zvýšeným rizikem remobilizace. Pro úsek mezi ústím řeky Bíliny a česko-německými hranicemi a dolní část povodí Bíliny to platí obdobně pro znečišťující látky DDX, HCB, PAU a těžké kovy. Vcelku to představuje potenciální ohrožení i pro niže položené oblasti.

Úložiště starých sedimentů Sály (rejdy plavebních stupňů, postranní struktury) vykazují téměř celé spektrum relevantních znečišťujících látek. Úložiště starých sedimentů Bode (dolní tok) jsou relevantní zejména v ukazatelech Cd, Pb, PAU a dioxiny / furany. Jako vhodný postup lze doporučit, aby byla stávající funkce přechodných úložiští využita pro dosažení poklesu šíření kontaminovaných jemných sedimentů níže po proudu. Pro tyto účely je nezbytné prověřit, do jaké míry lze provádět pravidelné vykližení těchto úložišť. Přitom je třeba zvážit výhody a rizika pro další způsoby využívání vod nebo jejich funkce. Do této prověrky je třeba zahrnout i stávající přístupy managementu.

Na Sále včetně jejich postranních struktur a relevantních přítoků je třeba prověřit, zda by se daly vnosy jemných sedimentů do Labe účinně snížit po sanací jižních úložišť a jejich cyklického vykližení (popř. dodatečně vedle již provedených opatření z hlediska plavby). Dále je třeba prověřit, zda lze pomocí technických opatření a/nebo změnou provozního režimu, např. v provozu plavebních komor, zvýšit retenci jemných sedimentů, zejména při zvýšených průtocích. Opatřením v hlavním toku Sály by měla předcházet opatření v jejich relevantních přítocích kategorie 2b.

Cíleně odtěžování sedimentů ke snížení uložených zdrojů znečišťujících látek ve výhonových polích Labe (sanace) a v postranních strukturách by bylo třeba provést převážně v úsecích pod zaústěním Mulde a Sály. Na jedné straně jsou vnosy z těchto přítoků vysoce zatížené. Na druhé straně leží kvantitativně hlavní část nánosů v oblasti pod ř. km 360 (výhonová pole), resp. pod ř. km 300 (postranní struktury). Je třeba prověřit sanací známých ohnisek (hot spots) a skupin výhonových polí s obsahem jemných sedimentů v území blízkosti. Z pozorování a modelových výpočtů byly odvozeny charakteristické vlastnosti výhonových polí, u kterých se dá usuzovat na
zvýšený výskyt náносů jenmých sedimentů. Tento výsledek lze využít v době před provedením opatření k výběru výhonových polí uvažovaných k vyklízení.

Pokud jde o nakládání s jenmými sedimenty ve slapovém úseku Labe, je cílený přesun kontaminovaného jenměho materiálu do úseku tzv. vnějšího Labe (nebo, jak se praktikuje v poslední době, do oblasti Severního moře – bôje E3) z hlediska kvality považován za kritický v souvislosti s ochranou mořského prostředí i Rámcovou směremi o strategiích pro mořské prostředí. Prověřit je třeba zejména zrychljený přesun znečišťujících látek do oblasti ústí Labe, resp. do Severního moře, k němuž dochází v důsledku prováděných opatření. Další rozpracovaní strategií managementu sedimentů pro nakládání s jenmýmým materiálem vyžaduje proto obsáhle předběžné průzkumy a prověrky také ve vazbě na ekologicky únosné oblasti jeho ukládání, popř. doprovázené monitorovací programy.

(4) Další zdroje
Na základě dosavadního bilancování vnosů vybraných znečišťujících látek v německé části povodí Labe byly jako příklad zdroje kontaminovaných jenmých sedimentů zahrnuty do hodnocení urbánní plochy. Pro českou část povodí nebyly takové bilance prozatím zpracovány. Urbánní plochy jsou relevantním zdrojem látek, jako je olovo, zinek, měď a PAU. Míra potenciálního efektu snížení kontaminace jenmých sedimentů v zásadě vyplývá z velikosti dílčího povodí a podlží urbánních ploch na daném povodí. Možnosti řešení a vyhlidky na úspěch musí být prozkoumány v rámci pilotních projektů.

Významně by mohly být cesty vnosu erozní smyv půdy (Pb, další těžké kovy), podzemní vody (Ni, další kovy), drenáže (Hg) a provoz sportovních lodí / oceánové vodní stavby (PAU), ovšem i zde je zapotřebí provést pilotní studie jak v České republice, tak i v Německu.

(5) Využití míst, kde se ukládají sedimenty
Údolní nivy, přehradky / nádrže a říční jezera (kap. 6.3) fungují jako úložiště sedimentů, a přispívají tak k retenci znečišťujících látek v povodí. Pro tento účel byly jako příklad provedeny analýzy v údolních nivách na Středním Labi a v nádrži Muldestauce. Na českém území nebyly v souvislosti se zpracováním této koncepte pro nakládání se sedimenty provedeny žádné analýzy.

Retence sedimentů v údolních nivách je největší tam, kde může při záplavách poměrně brzy dojít k rozlivům přes stará ramena do údolních niv. Z hlediska znečišťujících látek se záplavové plochy jeví jako nejúčinnější při vstupu Labe do Severoněmecké nižiny, kde se nacházejí rozlehle údolí nivy, a dále v levostranných úsecech pod ústím Mulde a mezi ústím Sály a městem Havelberg. Na českém území je příkladem takové lokality oblast od soutoku Labe s Vltavou po Lovosice.

Nádrž Muldestausee plní hlavní funkci při retenci znečišťujících látek z povodí horního toku Mulde, kterou by bylo možné dále stabilizovat a zefektivnit. Pomocí změn výšky hladiny vody by měl být podpořen co nejvíce rozvětvený, proměnlivý průběh toku Mulde v hlavní nádrži, který působí proti remobilizaci sedimentů. Obdobně hraje významnou roli při retenci znečišťujících látek z horního povodí Oheň nádrž Nechranice, kde jsou zadržovány sedimenty s nízkou schopností remobilizace, čímž se omezuje negativní vliv na jakost sedimentů v Labi.

Jako závěr v souvislosti s místy ukládání sedimentů lze říci, že jejich funkce by měla být zachovávána a v případě potřeby a dle možnosti i posílena vhodné tam, kde jejich užitek ve smyslu sníženého znečištění níže na toku převažuje nad negativními důsledky akumulace znečišťujících látek v místě a kdy to není v rozporu s příslušnými ustanoveními ochrany. Je třeba zvážit výhody a rizika pro další účely využívání vod nebo další funkce. Nesmí být zábranou pro nezbytnou opatření v případě povodně, nýbrž pokud možno jejich posílením. Pro nově vytvořené retenční plochy se mohou z důvodu znečišťujících látek projet určitá omezení při jejich využití. Zde by měly být podle možností zakládány lužní lesy, které by byly navíc účinným prostředkem k zvýšení drsnosti terénu, a tím i k podpoře retence sedimentů. Zároveň se tímto způsobem efektivně zpomalí povodňová vlna, tudíž se jedná o nástroj preventivní ochrany před povodněmi. V případě nezbytného vyklízení úložišť sedimentů, např. pro obnovení objemu nádrže nebo ke zlepšení kvality vody, je třeba včas znázornit cesty přesunu kontaminovaných sedimentů.

Jako celkový závěr pro aspekt kvality lze konstatovat, že základní řešení problematiky, které se ve vlastním smyslu váže na zdroje, je v některých případech možné nebo je bude třeba ještě vyjasnit, v jiných případech však podle odhadu příslušných úradů nelze najít žádné přiměřené řešení (viz tab. 7–1). Prověření potenciálně relevantních starých ekologických záležitost není dosud ukončeno (kap. 6.6 a FGG Elbe 2014).
Minimalizace rizika v rámci probíhajících sanačních a zabezpečovacích opatření v rozsáhlejších lokalitách by se měla důsledně provádět i nadále. Rozšířením poznamk o účinku zdrojů znečištění prostřednictvím cesty „povrchové vody / sedimenty“ bude možné dosáhnout pokroku při minimalizaci rizik i v tomto směru. Kromě toho by se provedením kontrolních kroků měly zlepšit informace o dalších potenciálních relevantních starých ekologických zátěžích a plochách s podezřením na staré zátěže. U starých

Tab. 7-1: Doporučené postupy z hlediska kvality

<table>
<thead>
<tr>
<th>Stát</th>
<th>Zdroj znečištění</th>
<th>Vodní tok</th>
<th>Látky 1**</th>
<th>Látky 2***</th>
<th>Zdroj (ano/ne)</th>
<th>V blízkostí zdroje (ano/ne)</th>
<th>Rezervance 2 (ano/ne)</th>
<th>Výška na ústích (velmi velká, velká, střední)</th>
<th>Poznámky / vysvětlivky</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZ</td>
<td>Synthesia, a. s.</td>
<td>Labe Pb</td>
<td>Cu, Zn</td>
<td>ano</td>
<td>ano</td>
<td>yes</td>
<td>no</td>
<td>-</td>
<td>zavedení dalších účinných opatření ve výrobě – využití inovativních technologií</td>
</tr>
<tr>
<td></td>
<td>ČOV Pardubice</td>
<td>Labe Hg</td>
<td>Cr, Cu, Ni, Zn</td>
<td>ne ano ne</td>
<td>velmi velká</td>
<td>yes</td>
<td>no</td>
<td>-</td>
<td>zavedení dalších účinných opatření ve výrobě – využití inovativních technologií ve výrobách, ze kterých jsou odhadněny vody odváděné na smíšenou centrální „pro-mysolovou-komunální ČOV“</td>
</tr>
<tr>
<td></td>
<td>Elektrárna Chvaletice</td>
<td>Labe - Cu, Ni</td>
<td>ano</td>
<td>ano</td>
<td>velmi velká</td>
<td>yes</td>
<td>no</td>
<td>-</td>
<td>zavedení dalších účinných opatření ve výrobě – využití inovativních technologií</td>
</tr>
<tr>
<td></td>
<td>Kovohutě Čelákovice</td>
<td>Labe - Cu, Zn</td>
<td>ano</td>
<td>ano</td>
<td>velmi velká</td>
<td>yes</td>
<td>no</td>
<td>-</td>
<td>zavedení dalších účinných opatření ve výrobě – využití inovativních technologií</td>
</tr>
<tr>
<td></td>
<td>Spolana, a. s.</td>
<td>Labe Hg</td>
<td>Cu, Zn</td>
<td>ano</td>
<td>ano</td>
<td>yes</td>
<td>no</td>
<td>-</td>
<td>zavedení dalších účinných opatření ve výrobě – využití inovativních technologií</td>
</tr>
<tr>
<td></td>
<td>Elektrárna Mělník</td>
<td>Labe As, Pb</td>
<td>-</td>
<td>ano</td>
<td>ano</td>
<td>velmi velká</td>
<td>yes</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Glazura, s. r. o.</td>
<td>Labe Pb</td>
<td>-</td>
<td>ano</td>
<td>ano</td>
<td>velmi velká</td>
<td>yes</td>
<td>no</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>INFRAPOLO, s. r. o.</td>
<td>Labe Pb Ni</td>
<td>ano</td>
<td>ano</td>
<td>velmi velká</td>
<td>yes</td>
<td>no</td>
<td>-</td>
<td>zavedení dalších účinných opatření ve výrobě – využití inovativních technologií</td>
</tr>
<tr>
<td></td>
<td>Lovochemie, a. s.</td>
<td>Labe Pb Zn</td>
<td>ano</td>
<td>ano</td>
<td>velmi velká</td>
<td>yes</td>
<td>no</td>
<td>-</td>
<td>zavedení dalších účinných opatření ve výrobě – využití inovativních technologií</td>
</tr>
<tr>
<td></td>
<td>Měd Pavly a. s.</td>
<td>Labe - Cu</td>
<td>ano</td>
<td>ano</td>
<td>velmi velká</td>
<td>yes</td>
<td>no</td>
<td>-</td>
<td>zavedení dalších účinných opatření ve výrobě – využití inovativních technologií</td>
</tr>
<tr>
<td></td>
<td>Mond Černík a. s.</td>
<td>Labe Pb Cu, Ni, Zn</td>
<td>ano</td>
<td>ano</td>
<td>velmi velká</td>
<td>yes</td>
<td>no</td>
<td>-</td>
<td>zavedení dalších účinných opatření ve výrobě – využití inovativních technologií ve výrobách, ze kterých jsou odhadněny vody odváděné na smíšenou centrální „pro-mysolovou-komunální ČOV“</td>
</tr>
<tr>
<td></td>
<td>ČOV - Nestěrmíce</td>
<td>Labe Hg</td>
<td>-</td>
<td>ne ano ne</td>
<td>velmi velká</td>
<td>yes</td>
<td>no</td>
<td>-</td>
<td>zavedení dalších účinných opatření ve výrobě – využití inovativních technologií</td>
</tr>
<tr>
<td>D</td>
<td>staré důlní štoly kolem Freiberku</td>
<td>Mulde Cd, As, Pb Zn, Cu</td>
<td>ano</td>
<td>ano</td>
<td>velmi velká</td>
<td>střední</td>
<td>ne</td>
<td>minimalizace rizika pomocí prováděných opatření</td>
<td></td>
</tr>
<tr>
<td></td>
<td>staré důlní štoly Zwickauer Mulde</td>
<td>Mulde As Ni</td>
<td>ano</td>
<td>ano</td>
<td>velmi velká</td>
<td>střední</td>
<td>ne</td>
<td>minimalizace rizika pomocí prováděných opatření</td>
<td></td>
</tr>
<tr>
<td></td>
<td>důlní štola Schlüsselestonen</td>
<td>Salis Pb, Cd Cu Ni</td>
<td>ano</td>
<td>ne</td>
<td>velmi velká</td>
<td>střední</td>
<td>ne</td>
<td>minimalizace rizika pomocí prováděných opatření</td>
<td></td>
</tr>
<tr>
<td></td>
<td>důlní štola Roth-schönbberger Stollen</td>
<td>Triebisch Cd Zn</td>
<td>ano</td>
<td>ano</td>
<td>velmi velká</td>
<td>střední</td>
<td>ne</td>
<td>minimalizace rizika pomocí prováděných opatření</td>
<td></td>
</tr>
</tbody>
</table>

* Pro německou část povodí viz také FGG Elbe (2014)
** Látky úrovni právních předpisů, týkajících se předmětu ochrany „léků zdraví“ (příloha A2-3; tab. T-A2-3-1b) a i nebo prioritní nebezpečná látky (ES 2008b); viz tab. 3-1
*** Další látky relevantní pro povodí Labe, viz tab. 3-1
?? Odhad není dosud ukončen
<table>
<thead>
<tr>
<th>Oblast opečení</th>
<th>Stát</th>
<th>Zdroj znečištění</th>
<th>Vodní tok</th>
<th>Látka 1**</th>
<th>Látka 2***</th>
<th>Zdroj (ano/ční)</th>
<th>V blízkosti zdroje jiného</th>
<th>Odpověď (anomální anebo zvýšené)</th>
<th>Výsledné hodnoty (velikosti, velikosti, střední)</th>
<th>Adézové řešení (anomální)</th>
<th>Poznámky / vysvětlení</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZ</td>
<td>Synthesis, a. s.</td>
<td>Labe</td>
<td>As, Hg</td>
<td>-</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td></td>
<td>Lučenbrn závody</td>
<td>Draslova, a. s.</td>
<td>Kolín</td>
<td>Σ 5 PAU</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td></td>
<td>Spolana, a. s.</td>
<td>Labe</td>
<td>Hg</td>
<td>-</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td></td>
<td>SPOLCHEMIE, a. s.</td>
<td>Labe</td>
<td>Σ 5 PAU, Pb, As, Hg</td>
<td>Zn, Cu</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td></td>
<td>staré ekologické zátěže, haldy kořen Freibergu</td>
<td>Mulde</td>
<td>Cd, Pb, As</td>
<td>Cu, Zn</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td></td>
<td>staré ekologické zátěže, haldy Zwickauer Mulde</td>
<td>Mulde</td>
<td>o., β, γ-HCH, dioxiny / furany</td>
<td>Ni</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>minimalizace rizika pomocí prováděných opatření</td>
</tr>
<tr>
<td></td>
<td>velký ekologický projekt (OGP) Bitterfeld-Wolfen</td>
<td>Mulde</td>
<td>o., β, γ-HCH, dioxiny / furany</td>
<td>??</td>
<td>ano</td>
<td>ne</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>minimalizace rizika pomocí prováděných opatření</td>
</tr>
<tr>
<td></td>
<td>OGP Buna</td>
<td>Sála</td>
<td>Hg</td>
<td>-</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td></td>
<td>Fohlenberg List</td>
<td>Labe</td>
<td>o., β, γ-HCH</td>
<td>-</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
</tr>
<tr>
<td></td>
<td>koncentrační hráze v úseku Bílina – státní hranice</td>
<td>Labe</td>
<td>As, Hg, Pb, HCB, PCB, Σ 5 PAU</td>
<td>Cu, Ni, p.p'-DDT, p.p'-DDE, fluorothen</td>
<td>ne</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>vyhodnocení výsledků projektu SedBLa</td>
</tr>
<tr>
<td></td>
<td>postranní struktury českého středního Labe</td>
<td>Labe</td>
<td>Pb, Hg, anthracen, benzo(a)pyren, HCB, Σ 5 PAU</td>
<td>Ni, p.p'-DDT, p.p'-DDE, PCB, fluorothen</td>
<td>ne</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>vyhodnocení výsledků projektu SedBLa</td>
</tr>
<tr>
<td></td>
<td>Zwickauer Mulde, Freiberger Mulde (Moldavský potok)</td>
<td>Mulde</td>
<td>As, o., γ-HCH, Cd, Pb, TBT</td>
<td>p.p'-DDT, Zn, Cu, Ni</td>
<td>ne</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>vyjádření výhled na úspěch a možnosti řešení v souvislosti s dalším plánem povodu</td>
</tr>
<tr>
<td></td>
<td>postranní struktury</td>
<td>Sála</td>
<td>Cd, Pb, o., β, γ-HCH, TBT, benz(a)pyren, anthracen, dioxiny / furany, Σ 5 PAU</td>
<td>Zn, Cu, Ni, p.p'-DDT, p.p'-DDE, fluorothen</td>
<td>ne</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>vyjádření výhled na úspěch a možnosti řešení v souvislosti s dalším plánem povodu</td>
</tr>
<tr>
<td></td>
<td>zdymadla</td>
<td>Sála</td>
<td>Cd, Pb, o., β, γ-HCH, TBT, benz(a)pyren, anthracen, dioxiny / furany, Σ 5 PAU</td>
<td>Zn, Cu, Ni, p.p'-DDT, p.p'-DDE, fluorothen</td>
<td>ne</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>ano</td>
<td>vyjádření výhled na úspěch a možnosti řešení v souvislosti s dalším plánem povodu</td>
</tr>
<tr>
<td></td>
<td>sedimentační zóny, Bode, dolní tok</td>
<td></td>
</tr>
<tr>
<td></td>
<td>postranní struktury</td>
<td>Labe pod r. km 300</td>
<td>Hg, Cd, Pb, As, o., β, γ-HCH, HCB, benz(a)pyren, dioxiny / furany, pentachlorobenzens, Σ 5 PAU, TBT, anthracen</td>
<td>Zn, Cu, Ni, Cr, p.p'-DDT, p.p'-DDE, fluorothen</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
<td>vyjádření výhled na úspěch a možnosti řešení v souvislosti s dalším plánem povodu, vysoké výhody na úspěch a možnosti řešení v souvislosti s dalším plánem povodu</td>
</tr>
<tr>
<td></td>
<td>výhonová pole</td>
<td>Labe pod r. km 300</td>
<td>Hg, Cd, Pb, As, o., β, γ-HCH, HCB, benz(a)pyren, dioxiny / furany, pentachlorobenzens, Σ 5 PAU, TBT, anthracen</td>
<td>Zn, Cu, Ni, Cr, p.p'-DDT, p.p'-DDE, fluorothen</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
<td>ne</td>
<td>vyjádření výhled na úspěch a možnosti řešení v souvislosti s dalším plánem povodu, vysoké výhody na úspěch a možnosti řešení v souvislosti s dalším plánem povodu</td>
</tr>
</tbody>
</table>

** Pro německou část povodí viz také FFG Ebe 2014
** Látka neuveden právních předpisů, týkajících se předmětu ochrany „čisté zdraví” (příloha A2-3, tab. T-A2-3-1b) a / nebo prioritní nebezpečné látky (ES 2006b), viz tab. 3-1
*** Další látky relevantní pro povodí Labe, viz tab. 3-1
?? Odhad není dosud ukončen
| Oblast opatření | Název | Zdroj znečištění | Vodní tok | Látky 1** | Látky 2*** | Zdroj (ano/nez) | V blízkosti zdroje (ano/nez) | Rezonační 2 (ano/nez) | Odpověď (ano/nez) | Vyhláška oznámení (épok, věk, střída) | Adresář hvězdiček (ano/nez) | Poznámky / vysvětlivky |
|----------------|-------|------------------|---------|--------|--------|-----------|-------------------|-------------------|----------------|----------------|----------------|----------------|----------------|
| CZ | - | rejdy Rothenburg, Als-leben, Wetlin, Calbe | Sála | Hg, Cd, Pb, \(\text{H}+, \text{B}+, \text{CH}^+\), \(\text{T}B\), benzo(a)pyren, antracen, dioxiny / furany, \(\Sigma 5 \text{ PAU}\) | Zn, Cu, Ni, pp-DDT, pp-DDD, p,p'-DDE, fluoranthen | ne | ano | ano | střední | ?? | ?? | vyjasnění vyhlídek na úspěch a možnosti řešení v souvislosti s dalším plánem povodí; rezonační účinek se vztahuje na situaci na Labi |
| D | sedimentační zóny | Bode, dolní tok | Pb, dioxiny / furany | fluoranthen | ne | ano | ano | střední | ?? | ?? | vyjasnění vyhlídek na úspěch a možnosti řešení v souvislosti s dalším plánem povodí; rezonační účinek se vztahuje na situaci na Labi |

* Pro německou část povodí viz také FGG Elbe (2014)
** Látky úrovně právních předpisů, týkajících se předem ochrany živěl zdraví** (příloha A2-3; tab. T-A2-3-1b) a / nebo prioritní nebezpečná látka (ES 2008b); viz tab. 3-1
*** Další látky relevantní pro povodí Labe, viz tab. 3-1
?? Odpad není dosud ukončen

Ekologické zátěži na toku se doporučuje, aby byla v rámci odhadu rizikovosti a sanací příměřeně zohledněna i cesta vnou „sedimenty v povrchových vodách”. Dále by se v případech, kdy již nelze zpětně usuzovat na významnější vnější vnosy, měla pozornost zaměřit hlavně na odstranění vnitřních zdrojů (sedimentů, starých sedimentů). Jakou relevanci mají tyto vnitřní zdroje v porovnání s recenzními vnitřními vnosy, se nedá ještě definitivně vyhodnotit, odhaduje se však, že jejich význam je značný. U jednotlivých znečišťujících látek (např. PAU) jsou jako stěžejní bod zmíněny i regulační oblasti mimo rámec vodního hospodářství.

Vedle snah o sanaci, snížení a kontrolo zbyvajících zdrojů znečištění se hlavní pozornost nutně soustředí na doporučení pro sanaci úložiště starých sedimentů se zvýšeným rizikem mobilizace a na nakládání s jenými sedimenty v řece, pokud mají být odváženy škody na níže položených úsecích toku a v mořském prostředí. Přitom by mělo být za všech okolností použito kritérium územní blízkost k (historickému) zdroji, a to i s pohledem na mezinárodní oblast povodí. Účinným prostředkem může být i cílené posilování funkci trvalých úložišť sedimentů, pokud proti nim nestojí žádná závažná omezení dalších účelů využití nebo funkcí.

(6) Povodeň v červnu 2013

Povodeň v červnu 2013 nabízí možnost ověřit v souvislosti s vyhodnocením specifických programů měření (např. FGG Elbe 2014) a aktualizací analýz následků povodní výpovědi učiněné k výši uvedeným bodům (2), (3) a (5), popř. je upřesnit.

7.3 DOPORUČENÉ POSTUPY Z HLEDISK HYDROMORFOLOGIE

Pro doporučené postupy nakládání se sedimenty z hlediska hydromorfologie pro český úsek Labe je základním předpokladem úplné zmappingování a vyhodnocení současného a historického stavu hydromorfológie toku Labe a jeho nivy. To umožní identifikovat mechanizmy a příčiny změn hydromorfoologického stavu a odvodit relevantní doporučené postupy.

Předběžná analýza na základě pilotního mapování vybraných úseků českého Labe (viz kap. 2.3 a obr. 5-2, 5-3) ukázala následující příčiny neuspokojivého
stavu Labe z hydromorfologického hlediska: (1) intenzivní úpravy podčinného profilu a trasy toku, které vedly k narušení přirozeného hydrologického režimu a přirozené fluvialní dynamiky; (2) historické úpravy trasy toku a údolní nivy, projevující se v omezené postupnosti údolní nivy pro sedimenty; (3) omezení přirozeného vývoje břehových struktur toku a přepravní funkce toku Labe, projevující se zásahy do koryta toku i hydrologického režimu. Budoucí doporučené postupy budou muset v souladu s touto koncepcí vyčápat z komplexního pohledu a hierarchického principu a přednostně brát v úvahu příčiny a mechanismy účinků, které přináší lišíčovou funkci ve vazbě na negativní změny hydromorfologického stavu (kličová funkce průchodnost pro sedimenty a hydrologický režim). Pro účinnost a trvalou udržitelnost doporučených postupů bude důležité zachovat komplexní charakter fluvialních procesů v systému povodí. Pro formulaci doporučených postupů bude zásadním kritériem jejich realizovatelnost. V tomto smyslu je nezbytná návaznost na ostatní aktivity a využívání toku a povodí.

Na německém vnitrozemském úseku Labe vypovídají charakteristické příčiny neuspokojivého stavu z hydromorfologického hlediska (1) ze sníženého přírůstku sedimentů jako výsledku retence sedimentů v celém povodí v důsledku využívání území, údolních nádrží, zdymadlu, příčných překážek a opevnění břehů v rámci úprav toků; (2) ze zvýšeného unášectví schopnosti toku Labe jako důsledku vlivů stavebních úprav toku (regulační koncepce, zkrakování toku) a výstavby protipovodňových hrází. Ve smyslu uceleného přístupu k managementu sedimentu a správě toků v povodí musí doporučené postupy začínat u těchto příčin a jejich určujících mechanismů účinků. Na základě tohoto předpokladu byla pro erozní úsek Labe mezi ří. km 120 a ří. km 290 zpracována „Koncepce stabilizace dna toku od Mühlenbergu po ústí Sály“ (WSD Ost 2009; Gabriel et al. 2011).

Do stanovení priorit doporučených postupů je třeba zahnutí i aspekty trvalé udržitelnosti a proveditelnosti. S ohledem na požadavek účinnosti opatření z hlediska uceleného povodí, možnosti financování, prostory dostupnost a doby realizace jsou proto v tabulce 7-2 uvedeny příklady doporučených postupů, které obsahují koncepce a vzájemné účinky přesahující rámec daného úseku a které jsou zaměřeny na oba charakteristické mechanismy účinků, resp. na příčiny narušeného režimu sedimentů. V podělném profilu vnitrozemského úseku Labe je třeba dosáhnout účinného snížení unášectví schopnosti a výrazného zvýšení přírůstku klastických sedimentů, aby tak byly mimo jiné zastaveny nepříznivé dopady zahloubání dna doprovázeného snížováním hladiny. Je třeba sledovat ucelené přístupy v rámci povodí za účelem kompenzace deficitu sedimentů a účinnému zamezení dalšího závažného zahloubání dna toku, které zahrnuje také zvýšení přírůstku sedimentů z povodí.

Ve slápovém úseku Labe by měla hydromorfologicky účinná hydrotechnická opatření mít primárně vliv na charakteristiku přílivu a odlivu s cílem snížit vliv přílivového proudění („tidal pumping“), a tím i transportu jemných sedimentů proti proudu v úseku estuáru. K takovým opatřením patří podle „Koncepce pro úpravu toku a nakládání se sedimenty ve slápovém úseku Labe“ (HPA a WSV 2008) vytvoření záplavového prostoru a restrukturnizace vedlejších labských ramen. Pokud jde o výčet potenciálních opatření v této koncepci, měly by následovat další konkretizující kroky. Je nezbytně nutné provést odhad nákladů a užitku a společně s dalšími aktéry (mimo jiné ochrana přírody, přizpůsobení se klimatu, ochrana mořského pobřeží) rozpracovat synergetické efekty. Příslušná opatření by se měla v zásadě soustředovat na funkční oblasti 1 až 3 (viz příloha A2-5), jelikož průzkumy Spolkového ústavu vodních staveb (BAW) ukázaly, že zvětšení záplavového prostoru se u vodních stavů při přílivu a odlivu v Hamburku projevuje o výrazněji, čím blíže k Hamburku se tento nově vytvořený záplavový prostor nachází (HPA a WSV 2008; Klöpper 2010). Stavební úpravy toku by bylo možné provést tak, aby zároveň vykazovaly i účinek z hlediska ochrany přírody, a přispěly ke zlepšení ekologického potenciálu v vnitřním estuáru. Jako příkladní pilotní projekt probíhá v současné době ve funkční oblasti 1 opatření „Spadenländler Busch / Krettsand“ (ří. km 618), v jehož rámci bude vytvořeno přibližně 30 ha mělčin ovlivňovaných přílivem a odlivem.

7.4 DOPORUČENÉ POSTUPY Z HLEDISKA PLAVBY

Koncepce pro nakládání se sedimenty je z hlediska plavby nezbytná pro zabezpečení, resp. obnovu definovaných plavebních poměrů pomocí cílených řídicích opatření a zásahů do režimu sedimentů. Zároveň je třeba zabezpečit řádný transport sedimentů do místo položených úseků toku.

Na vnitrozemském úseku Labe se to děje pomocí pasivních řídicích nástrojů, jako je regulaci systém, a pomocí aktivních opatření, jako je nakládání se splaveninami nebo nánosy sedimentů, omezujících hloubku plavební dráhy. Možností postupů pro vnitro-
Obr. 7-1: Možnosti managementu sedimentů na vnitrozemském úseku Labe z hlediska plavby

<table>
<thead>
<tr>
<th>Aktivní opatření</th>
<th>Pasivní opatření</th>
</tr>
</thead>
<tbody>
<tr>
<td>přidávání přemisťování</td>
<td>stavba háří*</td>
</tr>
<tr>
<td>vyplňování výmolu</td>
<td>výhony, opevnění břehů, koncent. háře</td>
</tr>
<tr>
<td>prohrabky</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opatření, úpravy</th>
<th>Úseky/oblast</th>
<th>celý vnitrozemský úsek Labe</th>
</tr>
</thead>
<tbody>
<tr>
<td>např. eroziční úsek, tzv. zbytkový úsek Labe, volně tekoucí český úsek Labe, režby plavebních komor v ČR</td>
<td>jezy, plavební komory</td>
<td>celý vnitrozemský úsek Labe</td>
</tr>
<tr>
<td>přístavy, režby plavebních komor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* z hlediska managementu sedimentů relevantní, zde však dále neposouzováno

zemský úsek Labe jsou schematicky znázorněny na obrázku 7-1. Doporučené postupy se vztahují jak na pasivní, tak i na aktivní opatření.

Na tocích regulovaných vzdutím, jako je české střední Labe, dolní tok Vltavy nebo Sály, má prioritu dlouhodobé sledování s cílem stabilizace podélného profilu dna. Za tímto účelem jsou nutné pravidelná měření a soustavný management sedimentů.

Koncepcie pro úpravu toku a nakládání se sedimenty ve slapovém úseku Labe (HPA a WSV 2008) specifikuje opatření pro nakládání s režimem sedimentů, ke snížování zatížení sedimentů a opatření na úpravu toku. Na obrázku 7-2 je znázorněn přehled těchto postupů. Opatření na úpravu toku působí v prvé řadě hydromorfológycky, což je pojednáno podrobněji v kapitolě 7.3. Jemné a hrubé frakce sedimentů podléhají rozdílným transportním procesům. Čerstvé jemné
sedimenty jsou i nadále zatíženy anorganickými a organickými látkami. Proto je třeba rozlišovat mezi opatřeními zaměřenými na nakládání s frakcemi písku s jemným materiálem.Pokud jde o různé typy písečných sedimentů, měla by se zachovat současná strategie používaná pro údržbu plavební dráhy. Podle současných stavu vědomostí je účelné přemístovat nebo překládat jemné sedimenty ve vnitřní části estuáru tak, aby byly odlehčeny zejména funkcí oblasti 2, 3 a 4. Budoucí strategie údržby by měly přispět k co nejvyváženější bilanci jemného materiálu pro vnitřní estuář. Užívá se o flexibilní a adaptační strategii, která podle možnosti zabezpečí cílený odnos množství jemných sedimentů ze slapového úseku Labe směrem do Severního moře. Tím by mělo být dosaženo pokud možno vyváženého režimu jemných sedimentů a dalšího snížení efektů neustálého bagrování.

Pro dosažení uspokojivé kvality odtěžovaných nánosů tak, aby kvůli zatížení znečištujícími látkami nedocházelo k omezení možných postupů, by měla sanační opatření probíhat ve vzběžné na zdroj znečištění, resp. v jeho blízkosti (viz kap. 7.2). Zejména ve slapovém úseku Labe vznikají v důsledku likvidace obrovského množství odstraněných nánosů na souši obrovněného nánosu na souši obrovské náklady (Netzband 2012). Z hlediska současného managementu odtěžovaných nánosů ve slapovém úseku Labe představují největší problémy znečišťující látky, jako jsou sloučeniny DDX a HCB, ale i kadmi- um, rtuť a TBT.

7.5 PRIORITY, NĚKOLIKAŇASOBNÝ UŽITEK A KONKURENČNÍ CÍLE

7.6 BUDUČÍ MANAGEMENT OTĎŽENÝCH NÁNOSŮ

Vodní toky jsou vysoce komplexní systémy, podléhající neustálým změnám. Pro nakládání se sedimenty je nezbytné pochopit výchozí procesy a účinné fak- tory. Rozhodnutí o tom, jak naložit s odtěženými sed- dimenty, musí být učiněno na základě obsáhlých

Koncepce pro úpravu toku a nakládání se sedimenty ve slapovém úseku Labe (2008)

Stavební opatření na toku
- vytvoření slapového objemu
- lapače sedimentů

Optimalizovaná údržba
- snížení množství odtěžovaných nánosů
- optimalizované a koordinované přemístování
- přerušení koloběhu bagrovacích prací

Snižení zatížení znečištujícími látkami
- podpora v rámci společenství Labe
- likvidace odtěžených nánosů na souši v Hamburku

Stav realizace opatření (leto 2013)

- lapače sedimentů Wedel
- plánování dalších lapačů sedimentů
- Kreetsand / Spadenübcher Busch
- koncepční plánování
- reorganizace přemístování materiálu v rámci WSV
- časově limitované vykládky u bode E3
- systémová studie jako základ nové flexibilní, adaptivní strategie umístování materiálu
- projekt ELSA na podporu sanačních prací v celém povodí Labe
- pokračování likvidace odtěžených nánosů na souši v Hamburku
- právní expertizy

Obecná opatření:
- evaluace koncepce mezinárodními experty (2011)
- proces veřejného dialogu k dalšímu vývoji (od r. 2013)
- mezinárodní výměna zkušeností (TIDE, SedNet apod.)

Obr. 7-2: Možnosti managementu sedimentů ve slapovém úseku Labe z hlediska plavby (HPA a WSV, 2008)

Kapitola 7.5

Koncepce MKOL pro nakládání se sedimenty
analýz, sloužících k odhadu důsledků učiněných kroků. Důležitými faktory pro nakládání s odtěženými nánosy je jejich zatižení znečišťujícími látkami a převláдаčící podmínky v místě jejich uložení.

Na českém úseku Labe platí v současné době pro odtěžené nánosy níže uvedená legislativa:
- zákon č. 185/2001 Sb., o odpadech
- vyhláška č. 294/2005 Sb., o podmínkách ukládání odpadů na skládky a jejich využívání na povrchu terénu,
- vyhláška č. 257/2009 Sb., o používání sedimentů na zemědělské půdě.

Na německém úseku Labe se s odtěženými nánosy nakládá podle těchto ustanovení:

Pokyny pro nakládání s odtěženými nánosy ve vnitrozemí (HABAB-WSV 2000). Hranice mezi uplatněním ustanovení HABAB a GÜBAK je ř. km 683 (lokalita Freiburger Hafenpriel).

Nakládání s kontaminovanými odtěženými nánosy na Labi – stav a doporučení (ARGE Elbe 1996). Tato zpráva je v oblasti Hamburku formálním základem dohody mezi BU a HPA.

Schválením Rámcové směrnice o vodách a Rámcové směrnice o strategii pro mořské prostředí byl v zásadě vytyčen nový rámec také pro nakládání s odtěženými nánosy. Do budoucích legislativních předpisů by se měla promítnout vzájemná závislost mezi manage-

Tab. 7-2: Matrice doporučených postupů zohledňující všechny aspekty

<table>
<thead>
<tr>
<th>Doporučení a reakce</th>
<th>Kvalita (K)</th>
<th>Hydromorfológie (H)</th>
<th>Plavba (P)</th>
<th>Odhad vzájemných účinků (vysoká synergie, synergie neutrální, konkurenční)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 1: Minimalizace bodových zdrojů průmyslového a komunálního znečištění v České republice</td>
<td>neutrální: žádné měřitelné dopady na bilanci sedimentů</td>
<td>pozitivní: snížení kontaminace odtěžovaných nánosů</td>
<td>synergie</td>
<td></td>
</tr>
<tr>
<td>K 2: Minimalizace rizika – staré dální štoly v Německu</td>
<td>viz K 1</td>
<td>viz K 1</td>
<td>synergie</td>
<td></td>
</tr>
<tr>
<td>K 3: Minimalizace rizika ze stárych ekologických záleží (velké projekty) v České republice a Německu</td>
<td>viz K 1</td>
<td>viz K 1</td>
<td>synergie</td>
<td></td>
</tr>
<tr>
<td>K 4: Odstranění a management jemných sedimentů: přirozené postranní struktury (odstavená ramena, tůňky) na úsech regulování vodních toků</td>
<td>neutrální: retencí jemných sedimentů v povodí se sice zvýší, dopady na celkovou bilanci jsou však splňem minimalní, ježkoť frakce štěrků a písku nejsou tak dobře</td>
<td>ve vztahu k nižší položeným subjektům na toku viz K 1; přímo: postranní struktury se neuvážují pro plavební účely</td>
<td>synergie; prováření konkurenčních účinků vůči plavbě</td>
<td></td>
</tr>
<tr>
<td>K 5: Odstranění a management jemných sedimentů: postranní struktury Labe na volné tokou cích úsech</td>
<td>neutrální: viz K 4; příp. pozitivní, mimo jiné kvůli odlučení dna toku, ježměna při vyšších průtociích a vyklizení struktur vodních toků (propro- ra zlepšení struktur vodních toků)</td>
<td>viz K 1, podchýbu vznosy ze celého výše položeného úseku toku</td>
<td>vysoká synergie</td>
<td></td>
</tr>
<tr>
<td>K 6: Odstranění a management jemných sedimentů: zdymadla / rejdy</td>
<td>viz K 4</td>
<td>pro plavební účely již existující pra- xem, v případě, že přesahuje tento rámec, je nutno prověření dopady na režim údržby a provozu plavební dráhy; ve vztahu k nižší položeným subjektům na toku viz K 1</td>
<td>synergie; prováření konkurenčních účinků vůči plavbě</td>
<td></td>
</tr>
<tr>
<td>K 7: Zlepšení retence jemných sedimentů z urbánních ploch</td>
<td>nadregionální: viz K 4;</td>
<td>viz K 1</td>
<td>synergie; prováření lokálních konkurenčních účinků vůči hydromorfológie</td>
<td></td>
</tr>
<tr>
<td>K 8: Zefektivníní retence jemných sedimentů v trvalých úložištích s nadregionálním význánem</td>
<td>viz K 4</td>
<td>viz K 1</td>
<td>synergie</td>
<td></td>
</tr>
<tr>
<td>K 9: Zvýšení retence jemných sedimentů v údolních nivách</td>
<td>tendenčně negativní, retence se týká nejen jemných sedimentů, proto by se mohlo níže po toku zvětšit jejich deficit; hodnocení přes celkovou bilanci je obtížné</td>
<td>viz K 1</td>
<td>prováření převažujících dů- sledků, odhad nelze provést</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 7-2: Matrice doporučených postupů zohledňující všechny aspekty (pokračování)

<table>
<thead>
<tr>
<th>Kvalita (K)</th>
<th>Hydromorfoologie (H)</th>
<th>Plavba (P)</th>
<th>Odhad vzájemných učinků (vysoká synergie, synergie neutrálně, konkurenční)</th>
</tr>
</thead>
<tbody>
<tr>
<td>přidávání materiálu: neutrálně, jelikož jde o nezatížený hrubý substrát; průmyslové substráty jsou vyložené přemášování / reakciavace: neutrálně / konkurenční učinky v závislosti na míře zatížení</td>
<td>H 1: přidávání splavenin (zvyšený přírůstek sedimentů přidáváním materiálu požadované změny) a přemášování / reakciavace dno- vých splavenin (např. z údolní nivy, viz H 7)</td>
<td>opatření lze řídit (místo, čas, množství), tudíž pozitivní vliv na zamezování nestálostí dna / plavebních překážek</td>
<td>prověření konkurenčních učinků včetně kvality a prověře- ní synergie z hlediska plavby</td>
</tr>
<tr>
<td>minimálně přechodně se musí počítat se zvyšeným přírůstem jemných sedi- mientů v dušedli, mobilizace úložiště starých sedimentů; riziko se dá od- hadnout a minimalizovat provedením sanace před H 2</td>
<td>H 2: zlepšení průchodozní pro sedi- menty na přírůstek překážek a na příjímacích (zvyšení přírůstku sedimentů do níž položených části toku)</td>
<td>opatření lze řídit (místo, čas, množství), tudíž neutrálně</td>
<td>prověření konkurenčních učinků včetně kvality</td>
</tr>
<tr>
<td>minimálně přechodně se musí počítat s erodovatelným, kontaminovaným materiálem; riziko poměrně nevypočítav- telné</td>
<td>H 3: zvýšení dynamiky sedimentů Labe a přišů; zvýšení přírůstku sedimentů (reaktiavace dolních úseků zaústění přírůstku a různých ramen, zrušení pevných ploch na březích, např. odstranění břehového opevňování, obnova návaznosti odstavených ramen a vedlejších koryt)</td>
<td>opatření se dá řídit jen přes rozšíření pláněho rozsahu odstranění pevn- ných ploch, jinak je záslešte na příčku; podpora režimu sedimentu je po- zitivní, v případě nezískaného vznusu sedimentu nebezpečí tvorby měk- kých míst</td>
<td>prověření konkurenčních učinků včetně kvality a prověře- ní synergie z konkurenčních učinků z hlediska plavby</td>
</tr>
<tr>
<td>neutrálně</td>
<td>H 4: snížení počtu mlad ukládání sedimentů</td>
<td>neutrálně</td>
<td>neutrálně</td>
</tr>
<tr>
<td>neutrálně, dotyka se zejména frakcí štěrku a písku, poměrně přechodně změny morfodynamiky / transportu</td>
<td>H 5: snížení transportní kaptuní pro pro- střednictví inovací změn a modifikací regulacích staveb a regulaciho systému</td>
<td>neutrálně, pokud se změna omezuje na oblast erozivních učinků zvyšujících přírůstek, popř. dokonce potenciální ajespořitendenci „ziskat zpět“ sní- žené volné stavby ze silného založené- ného koryta toku v rozsahu průtoků malých až průměrných vodních sto- vů, jinak riziko za bezpečnost a snadný provoz plavby (harmonizace s P 1)</td>
<td>neutrálně; prověření syner- gia / konkurenčních učinků z hlediska plavby</td>
</tr>
<tr>
<td>neutrálně, jemné sedimenty nejsou dočteny (vyložit průmyslové substráty)</td>
<td>H 6: zhruba 60%ho části substrátu</td>
<td>viz H 1, ovšem riziko pevných, v plavební dráze „rostoucích“ vrtě, pokud bude okolí eroze pokrakov</td>
<td>neutrálně; prověření syner- gia / konkurenčních učinků z hlediska plavby</td>
</tr>
<tr>
<td>minimálně přechodně se musí počítat s erodovatelným, kontaminovaným materiálem; riziko poměrně nevypočítav- telné – obecně však vzniknou ne- kontaminované hrubší sedimenty, jemnější kontaminované by nebyly přišeny</td>
<td>H 7: výslovné práce v předhává za účelem založení terénu údol- ních niv – přiblížení šký a údolní nivy (v kombinaci s H 1 a H 8) a po- bř. včetně zrušení trasy hrudí</td>
<td>neutrálně; příp. pozitivní, jelikož rych- lejším vybavení doháč je snižé- ni zatížení dna / založení, a tudíž menší nárůst udržby</td>
<td>neutrálně; prověření konku- renčních učinků z hlediska kvality</td>
</tr>
<tr>
<td>neutrálně</td>
<td>H 8: návěstí dna tokou (přiblížení še- ky a údolní nivy); v přesahu ně- kolika úseků v kombinaci s H 7 – použití nezatížených sedimentů z údolních niv</td>
<td>zvyšené riziko pro udržování poměru hloubek vody</td>
<td>neutrálně; prověření konku- renčních učinků z hlediska plavby</td>
</tr>
<tr>
<td>neutrálně, víz H 5 pozitivní, pokud bude kombinováno se sanací zabalených výhonnéch pólí</td>
<td>synergie / neutrálně, víz H 5</td>
<td>P 1: udržování, resp. obnova regulaciho systému velkého tekučeho vnitrozemského úseku Labe včetně optimalizace spojnice způsobit tlakovou se zohledněním změnění erozí (např. přizpůsobení hydro- technickéch staveb na střední vodo současné úrovni střední vody nebo modifikace hydro- technickéch staveb v souvislosti s upraveným regulacích účinkem v oblasti střední vody a optimalizovaným regulacích účinkem v oblasti malé vody</td>
<td>prověření synergie / neutrální- ních učinků z hlediska hydromorfologie; prověření synergie s kvalitou</td>
</tr>
<tr>
<td>neutrálně, týká se hrubých substrátů</td>
<td>neutrálně</td>
<td>P 2: minimalizace nezbytného přemášování splavenin na vnitrozemském úseku Labe</td>
<td>neutrálně</td>
</tr>
<tr>
<td>urychlení transportu směrem do moře</td>
<td>dopady na frakci štěrku a písku téměř žádné snížení zazemňování postranních ob- lastí apod</td>
<td></td>
<td>P 3: optimalizace nakládání s jemnými sedimenty ve lako- vém úseku Labe</td>
</tr>
<tr>
<td>neutrálně</td>
<td>neutrálně (pozitivní např. utváření vodních / nových struktur, negativní např. utváře ploch mělčin – watçu)</td>
<td></td>
<td>P 4: vypracování hydrotechnických opatření ve lako- vém úseku Labe (mimo jiné ke snížení množství odebíraných nánosů)</td>
</tr>
</tbody>
</table>
mentem sedimentů a odtěžených nánosů. V rámci uceleného managementu sedimentů jako součásti správy povodí by měla být v tomto smyslu učiněna opatření, která povedou ke stabilizaci a zlepšení režimu a stavu sedimentů podle množství i kvality, což bude mít za následek i zlepšení hydromorfologických poměrů. To je rozhodujícím předpokladem pro efektní a ekologicky únosný management odtěžených nánosů. Nakládání s odtěženými nánosy chápáme jako část uceleného managementu sedimentů, které rozhodující měrou přispěvá k dosažení jeho cílů. Významným způsobem se může podílet na formování hydromorfologie. Odpovídající zaměření managementu odtěžených nánosů i se zohledněním hydromorfologických zájmu by proto mělo patřit v budoucí k zásadám, podporujícím zejména řešení významného problému nakládání s vodami „zlepšení struktury a průchodnosti toků“ (kap. 1).

Z hlediska kvality pro hospodářské nakládání s odtěženými nánosy, zaměřené na cíle ochrany vod a mořského prostředí, mají vzhledem ke specifikám Labe nadto mimořádný význam již uvedené zásady:

Cílené sanace v zájmu zlepšení stavu kvality

- Na prvním místě by měly stát sanace přímých příčin znečištění, tzn. odstranění vlastního zdroje znečištění. To je jediná cesta pro trvalé řešení problémů vznikajících při opařeních údržbě se zatížením odtěžených nánosů znečišťujícími látkami.
- Následně je nezbytné specifikovat nejvíce zatížené sedimenty pokud možno v blízkosti zdroje nebo je odstranit jako odtěžené nánosy, pokud by se v důsledku remobilizace mohly stát více než lokálním rizikem, a tím mohly dále po proudu přispět k sekundárnímu znečištění.

Využití a optimalizace stávající praxe managementu v zájmu cílů uceleného managementu sedimentů v Labi

Při úpravách koryta nebo při opařených údržbě stojí zpravidla v popředí dopravní nebo hydrotechnický účel (hlavní aspekt kvantita). Významným omezujícím faktorem pro nakládání s odtěženými nánosy na Labi je její ujemnějších sedimentů i nadále zatížení znečišťujícími látkami, zjména v souvislosti s přemisťováním a ukládáním uvnitř vodního systému. Na vnitrozemském úseku Labe se při opařených údržbě vyskytuje poměrně malé množství jemnějších sedimentů s vyšším zatížením znečišťujícími látkami. Ve slapovém úseku Labe je tomu naopak. V blízkosti pobřeží pak opět převažuje kvalitativní aspekt nad kvalitativním. V zájmu celkových cílů v povodí jsou předkládány následující návrhy:

- Na vnitrozemském úseku Labe provádět roční balance množství kontaminovaných jemnějších sedimentů připadajících na jednotlivé prohrabky, včetně látkových odvodů s cílem striktního dodržování definovaného limitu látkových odvodů (např. 10 % ročního látkového odvodu na příslušném referenčním profilu). Pokud by hrozilo, že by ten to látkový odvod k dodržení dopravních cílů mohl být překročen, je třeba uvažit jiné možnosti než je přesun v toku (přemisťování / ukládání).

- Přemisťování sedimentů, které je z hlediska plavby ve slapovém úseku Labe nezbytné, velmi komplikuje jejich zatížení znečišťujícími látkami. Odtěžení veškerého množství kontaminovaných nánosů je prakticky nemožné. Proto je nezbytné předchodištní ustanovení v těsné provázanosti se sanačními opatřeními v povodí Labe s vazbou na zdroje. V budoucnu by mohla být jako reference pro dosažení cílů pro management sedimentů Labe využita stávající kvalita piavenen v referenčním profilu na přechodu mezi vnitrozemským a slapovým úsekom Labe. Na úrovní povodí (MKOL, národní gréma) by se pak muselo pravidelně prověřovat zatížení znečišťujícími látkami s ohledem na nezbytnou nápravu a provádět s tím spojená potřebná sanační opatření v celém povodí Labe.

7.7 MOŽNOSTI MANAGEMENTU PRO KOHEZIVNÍ, KONTAMINOVANÉ SEDIMENTY

Pro nakládání se sedimenty je ke disponici široké spektrum osvědčených postupů, jejichž výběr vychází z jednotlivých případů primárně z určitého podnětu. U opaření údržby stojí v popředí nezbytná obnova stavu vodního toku pro daný účel pomocí odtěžení uložených sedimentů. Určující je zpravidla kvantita sedimentů, aspekt kvality se k tomu může přidalat a spoluzhodnotit při výběru možností managemen- tu. Cílem sanačních opatření je snížení rizika, vy- cházejícího ze zatížení sedimentů znečišťujícími látkami. Pokud jsou ve vodním toku zjištěny kontaminované sedimenty, jedná se především o jemné sedi- menty a jen ve výjimečných případech o sedimenty hrubé. Katalog opatření „Přehlední seznam dostupných možností nakládání se sedimenty“ (příloha A5) poskytuje přehled o možnostech nakládání se sedimenty zvláštním zřetelem na nakládání s kontaminovanými, kohezivními sedimenty. Uvedeny jsou postupy, které byly úspěšně aplikovány již dříve, zejména v povodí Labe. Údaje o nákladech na uvede- né postupy mohou sloužit pouze jako hrubá orientace. Důležitou roli hraje velikost zařízení, resp. rozsah
opatření, přičemž specifické náklady zpravidla klesají s jejich velikostí. Obecně lze říci, že přemístování materiálu v toku stojí jen několik málo eur na metr krychlývý, na ukládání pod vodou by se mělo počítat s náklady 10 – 20 eur a více na metr krychlývý a postup pro likvidaci na souš vyžadují zpravidla více než 50 eur na metr krychlývý. Nebylo provedeno žádné právní posouzení realizovatelnosti nebo přípustnosti těchto opatření. V konkrétních případech je třeba prověřit, zda lze aplikaci provést. Výčet není definitivní. **Obrázek 7-3** ukazuje možnosti nakládání se sedimenty formou navazujících postupů.

Katalog je utříděn podle níže uvedených osmi kategorií:
1. Nakládání s plaveninami. Cílem je ovlivnění procesu transportu sedimentů v důsledku zvýšení nebo snížení sedimentace.

Obr. 7-3: Možnosti nakládání se sedimenty formou navazujících postupů
2. Přemístování / ukládání sedimentů. V souvislosti s údržbou se sedimenty přemístí na jiné místo v toku; toto je primární postup managementu množství sedimentů.

5. Předčištění / čištění. Vlastnosti sedimentů odebíraných z toku se mění tak, aby bylo možno dále zužitkovat nebo uložit na skládku.

6. Využití po výčištění. Tyto (výčištěné) sedimenty se dále zužitkovávají na souši, např. jako náhrada za jiné materiály.

7. Odstraňování. Sedimenty se natvrlo odstraní z látkového oběhu.

8. Údolní nádrže a zdymadla. Nakládání s pevnými látkami z údolních nádrží a zdymadel může mít význam pro management sedimentů v povodí.

7.8 MOŽNOSTI MANAGEMENTU Z HYDROMORFOLOGICKÉHO HLEDISKA

V rámci koncepce pro nakládání se sedimenty byla vypracována systematika ke zdokumentování a znázornění možností managementu pro režim sedimentů z hlediska kvantity / hydromorfologie, zejména pro nekonevní sedimenty (hrubé sedimenty – kamení, hrubý a drobný štěrk, písek). Systematika nevyučuje jené sedimenty (jil, bahno). Možná opatření jsou zařazena do následujících kategorií:

1. opatření v toku (např. nakládání se splaveninami / sedimenty nebo ekologicky zaměřené rozšíření říčního koryta)

2. opatření na břehu (např. erozní odnosi nebo zářezy v břehových valech)

3. opatření v údolní nivě (např. odbahnění tůní)

4. opatření na hydrotechnických stavbách (např. modifikace výhonů)

Veškeré návrhy opatření platí v zásadě pro samotný tok Labe i pro přítoky. Labe a jeho přítoky v oblasti soutoku fungují jako hlavní vodoteče v povodí Labe, a reflektují proto vedle dopadů přímyslích zásahů v řece, na břehu a v údolní nivě také faktory z celého systému působící na hydromorfologický charakter toku. Ke zlepšení hydromorfoLOGICKých poměrů a vytvoření vyvažovaného režimu sedimentů na vnitrozemském úseku Labe a dolních úsech relevantních přítoků má hlavní význam zejména realizace opatření na ploše povodí.

Na německé straně připravila národní skupina expertů podkladové materiály, obsahující výběr potenciálních postupů a již zrealizované příklady opatření ke zlepšení hydromorfoLOGICKých poměrů a na podporu vyvozeného režimu sedimentů, které jsou k dispozici pro další proces jako pracovní materiál.

8. HLAVNÍ BODY PRO MONITORING KE SLEDOVÁNÍ VODNÍCH TŮKŮ A KE KONTROLE ÚSPĚšNOSTI

Monitorování chemického a ekologického stavu Labe a jeho přítoků je v České republice v kompetenci Ministerstva životního prostředí a Ministerstva zemědělství. Rozsah monitorovaných ukazatelů a četnost jejich sledování je v souladu s Rámcovým programem monitoringu podle Rámcové směrnice o vodách. Monitorovací programy v gesci obou ministerstev se každoročně aktualizují. Programy monitoringu pevných matric vyhlašuje ČHMÚ. Odborné zabezpečení probíhá v součinnosti se správcí povodí. ČHMÚ provozuje také síť sledování režimu plavenin v celorepublikovém měřítku. Monitoring sedimentů je rovněž nedílnou součástí monitorovacích programů správců povodí.

V Německu zodpovídají za monitorování vod spolkové země. Směrovodně jsou v zásadě ustanoveni spolkové vyhlášky o povrchových vodách (OGewV

Kapitola 8

Koncepce MKOL pro nakládání se sedimenty

69
8.1 SPECIFICKÉ POŽADAVKY NA MONITORING PLEVANÍN A SEDIMENTŮ

Monitoring plavení a sedimentů je na jedné straně zaměřen na specifické cíle spojené s koncepcí pro nakládání se sedimenty a na druhé straně slouží obecným cílům monitoringu v povodí Labe ke sledování relevantního látkového spektra v pevných materiích. Stejně jako každý monitoring může sledovat tyto účely (FGG Elbe 2010):

1. Hodnocení stavu vodního toku, např. porovnáním s normami environmentální kvality a s požadavky klasifikace sedimentů. Pro tyto účely je zapotřebí odebrat pravidelně vzorky plavení, které odrážejí aktuální situaci v toku, a to jak z kvantitativního, tak i z kvalitativního hlediska.

2. Zjišťování trendů. Zde jsou nezbytné dlouhodobé řady dat indikátorů uvedených v této koncepci (kvantita, kvalita), resp. periodické zdokumentování a vyhodnocení stavu pomocí hydromorfoložských indikátorů ve vztahu vůči definovanému referenčnímu stavu. Z hlediska kvality jsou k prověřování trendů v podstatě vhodné jak plaveniny, tak i sedimenty.

3. Zjišťování látkových odnosů pro bilance. Zde jsou nutná data splavénin (kvantita), pokud možno s vysokým rozlišením a data plavenin (kvantita, kvalita).

4. Další otázky, jako je průzkumný monitoring (např. k analýze rizik ve vazbě na ždroje v rámci této koncepce), mimořádný monitoring (např. při extrémních hydrologických situacích), monitoring účinků (např. k odhadu dlouhodobějších dopadů havárií na vodní společenstva) nebo sledování specifického zatížení vodních toků v povodí stopovými látkami. Pro tyto účely může být v závislosti na specifické problematice vhodnější sledovat sedimenty nebo plaveniny.

Ke zjišťování trendů a bilancování látkových odnosů je nezbytné, aby získaná kvantitativní, kvalitativní a hydromorfoložská data měla co nejvýšší rozlišení. Povodňové situace mají vzhledem k době jejich trvání nadměrně vysoký podíl na transportu látěk (odnosy plavení a odtoky znečišťujících látěk). Proto platí toto pravidlo zejména pro extrémní situace na točících se jejich náhlymi změnami. Zdokumentování látkových odnosů během extrémních situací pomáhá hospodář v podobě významného měření a prospekce výsledků.

Vzájemné působení řeky, údolní nivy a postranních struktur hraje významnou roli právě pro pevné látky a na ně vázané znečišťující látky, a to zejména v mimořádných situacích.

8.2 NÁVRHY NA ZAČLENIENÍ DO MONITORINGU VODNÍCH TOKŮ

Práce na koncepci pro nakládání se sedimenty ukázala, že je potřeba pracovat v různých směrech na zlepšení datových podkladů. Příjem by se mělo důsledně vycházet za prvek ze systémového přístupu zvoleného v rámci této koncepce (kap. 2, příloha A2-1) a za druhé z požadavků formulovaných v kapitole 8.1. Potřeba pravidelného monitorování se ukazuje jako nezbytná zejména v níže uvedených oblastech, kromě toho jsou specifická hlediska pojednána také v kapitole 9.2:

- Průběh trendu. Relevantní znečišťující látky v kontextu managementu sedimentů je třeba na referenčních profilích zařadit do příslušných národních a mezinárodních programů měření a provádět během 2. plánovacího období každoročně sledování.

- Balance odnose znečišťujících látek. Monitorovací program podle Rámcové směrnice o vodách musí být pro zjištění látkových odnosů rozšířen. To platí
zejména pro sledování plavení na přechodu mezi vnitrozemským a slapovým úsekelem Labe a na přítocích s relevantním zatížením. Aby bylo možné zobrazit šíři pásma systému, je třeba vodní toky sledovat dlouhodobě a častěji. Rozhodující, i menší vodní toky (např. kategorie 2a, 2b) musí z důvodu relevantních ukazatelů zůstat v programu měření s četností minimálně 4 až 12 sledování ročně. Týdení slévání vzorky musí být v budoucnu podrobeny intenzivnějšímu analýzám znečišťujících látek relevantních pro Labe. Znečišťující látky, u kterých se ve vodně fázi naměřené hodnoty pohybují pod mezi stanovitelnosti, by měly být za účelem výpočtu látkových odnosů i nadále sledovány v matrice „plaveniny“.

- Povodně nejsou v rámci ročních programů měření dobře zdokumentovány. Na německé straně by bylo během povodně v červnu 2013 poprvé aplikován mimořádný program měření pro extrémní situace (FGG Elbe 2012). Na české straně provádějí správci toků povodňové programy měření, které zahrnují také sledování povodní. Skupina expertů doporučuje, aby byly programy měření pro případy povodní zharmonizovány pro celou oblast povodí.
- Transport sedimentů a jejich remobilizace je třeba sledovat pravidelně i nadále. K tomu jsou zapotřebí i data o transportu plavení v nesplavných a relevantních malých přítocích.

- Kromě sledování podle požadavků Rámcové směrnice o vodách pro skupinu složek kvality průchodnost pro sedimenty a morfologie, které jsou pokryty v rámci koncepce managementu sedimentů, by měly být do monitoringu zařazeny také indikátory průměrná změna nadmořské výšky dna – bilance sedimentů a poměr recentní a morfologické údolní nivy (viz tab. 3-2 a příloha A2-4).
- V zájmu adekvátního zobrazení poměrů širokého toku by se v budoucnu měly průměrovat výsledky z pravého a levého břehu v měrných profily Hřensko / Schmilka, Cumlolen a Schnackenburg.
- Dohody termínů odběru vzorků by se měly rozšířit i na vyprazdňování sedimentačních nádrží.
- Odsouhlasení s dalšími programy. Programy měření sedimentů a plavení v kompetenci různých institucí (spolkové země a spolková vláda v Německu, různé programy monitoringu povodní matric v české republice) by měly být navzájem zharmonizovány a měla by být zabezpečena výměna dat pro přechodné úseky (CZ – D; vnitrozemský – slapový úsek) je třeba provádět bilanční porovnání.
- Výběr relevantních látek a látkových skupin pro management sedimentů je třeba prověřovat jednak za plánovací období a v případě potřeby by měly být do monitoringu vodních toků zařazeny i další látky. Přítom je třeba zohlednit i novely příslušných vyhlášek a směric.

9. VÝHLED NA DALŠÍ PROCES

V souvislosti se zpracováním koncepce pro nakládání se sedimenty se potvrdil význam tematiky sedimentů pro základní cíle MKOL. V této kapitole jsou uvedeny návrhy na další postup při řešení této problematiky.

9.1 ZAKOTVENÍ TÉMATU SEDIMENTŮ

Zpracováním koncepce pro nakládání se sedimenty byl splněn cíl prvního Mezinárodního plánového období povodí Labe (MKOL 2009) a vytvořeny předpoklady, aby se tematika sedimentů stala na základě svého významu nedílnou součástí vodohospodářského plánování a praxe v povodí Labe. Tohoto cíle by bylo možné dosáhnout následovně:

- Na základě této koncepce by mělo být téměř managementu sedimentů podrobně pojednáno ve 2. plánovacím období (2015 – 2021) podle Rámcové směrnice o vodách v souvislosti s dosažením cílů „d苍ý ekologický / chemický stav“. Měly by být podrobně pojednány a zohledněny požadavky, základy a kritéria Rámcové směrnice o strategiích pro mořské prostředí.
- Zodpovědní aktéři na české a německé straně by měli na základě této koncepce odvodit konkrétní opatření pro přiští plán povodí a zařadit je do programů opatření.
- Tato koncepce by měla být porovnána na národní i mezinárodní úrovni s přístupy jiných povodí.
- Zvýšená pozornost by měla být věnována aspektu přesahujícího oblast různých environmentálních mědií a regulačních ustanovení (ucelena koncepce pro nakládání se sedimenty). Tento naléhavý požadavek zahrnuje aktualizaci legislativních ustanovení (např. dokumentování a vyhodnocení stavu znečišťujúcích látek v příslušných environmentálně relevantních matricích – voda, sedimenty, biota) a měly by být na národní úrovni přenesen do příslušných grémí.
Pro nakládání s odtěžovanými nánosy by měla být zpracována pravidla pro celé povodí, která by vylučovala ukládání / přemístování vysoce kontaminovaných jemných sedimentů, u kterých by se daly očekávat negativní změny vlastností toku nebo které by nebyly v souladu se zákazem zhoršení a s požadavky na zlepšení uvedené v příslušných legislativních předpisech o životním prostředí.

Měly by být realizovány návrhy na monitorování (kap. 8.2).

Měly by být odstraněny relevantní mezery v poznatcích (kap. 9.2).

Data získaná v rámci koncepce pro nakládání se sedimenty by měla být zapracována v co největší rozsahu do stávajících národních databází a odborných informačních systémů.

Ad hoc skupina expertů Management sedimentů MKOL by měla ve své odborné práci ve stávající konstelaci vhodným způsobem pokračovat.

9.2 **DEFICITY V POZNATCÍCH A NÁVRHY NA JEJICH PŘEKNÁNÍ**

Hlavní deficity v poznatcích se týkají těchto oblastí:

- datové podklady k popisu systému ze všech tří hledisek (kvalita, kvantita, hydromorfologie)
- popis systémových souvislostí
- posouzení účinnosti opatření ve vazbě na systém
- nakládání se sedimenty v porovnání s dalšími způsoby využívání vod a regulačními předpisy

Datové podklady

U vnitrozemských toků v podstatě platí, že kvalita datových podkladů se zvyšuje s velikostí toku. V souvislosti s koncepcí pro nakládání se sedimenty by vyvinut systematický postup (kap. 2, 3), podle něhož by datový fond počínaje nadregionálními otázkami systematicky a postupně dle potřeby rozšiřovat. Ke zlepšení datových podkladů by mělo dojít v souvislosti s upraveným monitorováním jak za běžných, tak i za mimočádlných podmínek (viz kap. 8). Po realizovaných opatřeních by měly být prováděny monitorovací programy a vzájemně sladěny programy měření různých aktérů.

V České republice lze datové podklady shrnut následovně: Reprezentativní datové podklady z hlediska kvality jsou k dispozici pro Labe a přítoky kategorie 1. To se však stejnou měrou neřílí o menších přítocích. Kvantitativní poměry na Labi a jeho přítocích v dostatečném rozsahu charakterizují standardní měření státní hydrologické služby ČHMÚ. Pro zpracování hydromorfologických ukazatelů přetrvává nedostatek systematických datových podkladů pro vyhodnocení Labe i jeho přítoků. Na toku Labe jsou k dispozici podklady pro pět vybraných charakteristických sekci toku v délce 120 km včetně hraničního úseku. Pro komplexní posouzení hydromorfologického stavu ohledně transportu sedimentů je nutné hodnocení v celém kontinuální toku. Hydromorfologické datové podklady pro Labe a relevantní přítoky je proto třeba doplnit.

V Německu lze situaci v datech popsat v souhrnu takto: Zatímco u Labe a přítoků kategorie 1 jsou z hlediska kvality zpravidla k dispozici dlouhodobé, obsáhlé datové soubory, u menších toků to převážně neplatí. Pokud jde o kvantitativní poměry, dá se situace na splavných tokcích popsat dobře, zatímco datové podklady na dalších přítocích kategorie 1 a obzvláště pak na menších tokcích jsou podstatně horší. Pro zpracování hydromorfologických ukazatelů jsou datové podklady na přítocích obecně nedostačující, naproti tomu na Labi je situace zpravidla velmi dobrá.

Povodňové situace mají pro transport sedimentů mimořádný význam, ale v rámci řadných programů měření, které jsou nutné zaměřeny na běžné poměry, nejsou právě tyto situace ve své dynamice dobře zdocumentovány. Pro lepší pochopení povodňových procesů by měla být prováděna cílená měření například i při menších povodních různé intenzity, sezónního a regionálního typu, např. podle požadavků programu měření FGG Elbe pro extrémní situace.

Systémové souvislosti

V souvislosti s koncepcí pro nakládání se sedimenty byl na konzistentním systematickém základě vypracován také přehled stávajících deficitů ve znalostech systému z nadregionálního hlediska. V dalším pracov-
ním procesu by měla být dále rozvíjena lepší znalost systémových souvislostí prostřednictvím mimořádných programů měření, pilotních projektů nebo aplikovaných výzkumných projektů. Zjištěné deficity se týkají všech tří hlavních aspektů, a to jak systému jako celku, tak i jeho částí:

- **Modely.** Pro lepší pochopení transportu sedimentů je nezbytné mít k dispozici lepší matematický popis vztahů mezi transportem a průtokem, zejména pro velké průtoky. Na to musí navazovat modelování transportu partikulárně vázaných znečišťujících látek, které je doposud realizováno jen zlomkovitě.

- **Dílčí povodí.** Z kvalitativního hlediska je na české straně třeba přednostně zpracovat kompletní podrobnou analýzu přítoků kategorií 1. Na německé straně chybí především ucelený odhad situace na toku Bílého Hašťova. V zájmu snížení nejistot by měla být provářena relevantnost případných dalších přítoků kategorií 2b. Z kvalitativního hlediska je v prvé řadě nutno posílat nesplavné přítoky kategorií 1 a poté postupně další přítoky podle jejich významu pro bilanční sedimentů v Labi. Z hlediska hydromorfologie má na německé straně přednost analýza přítoků kategorií 1 a následně dalších přítoků, významných pro zdroje sedimentů na základě zpracovaného metodického podkladu. V české republice je třeba systematicky rozšířit analýzu a hodnocení, zahájené na pilotních úsecích, a zkomplikovat je pro celý tok Labe i jeho relevantní přítok.

- **Zdroje a místa ukládání sedimentů.** Z kvalitativního hlediska má na české straně přednost hodnocení rizikovost uložení sedimentů a starých sedimentů v Labi a ve Vltavě. Dosud však nebyla provedena systematická analýza vlivu přírodních překážek a koncentračních hrází na Labi a na Vltavě, kvantifikace uložených sedimentů a znečišťujících látek na těchto přírodních překážkách a odhad s tím spojeného rizikového potenciálu (viz kap. 6.1). V údolí nivní českého Labe se nachází velké množství přirozených a technických postranních struktur, jako jsou odstavená ramena, tůně nebo přístavy. Systematické zdokumentování jejich velikosti, po- lohy a návaznosti na tok prozatím chybí. V prvním kroku je třeba dokončit projekty SedBiLa a SedLa. Dále je nutné na české straně prověřit lokality se starými ekologickými zátěžemi na přítočích Labe kategorií 1 a 2 z hlediska jejich potenciálního významu pro sedimenty. Na německé straně bylo zjištěno přibližně 40 případů lokatil s podezřením na staré ekologické zátěže, které jsou potenciálně relevantní pro sedimenty (viz FGG Elbe 2014), které budou nejdříve podrobeny podrobnému přezkumu (krok 2) a na základě získaných výsledků bude rozhodnuto o dalším řešení. Pro lepší pochopení typu zdroje znečištění „sedimenty / staré sedimenty“ je nutno dále obecně podpořit odhady množství a výpovědi o remobilizovatelnosti. Lépe musí být prozkoumána role dalších zdrojů v celém povodí. Jako první krok by bylo žádoucí provést bilanční vnoсоn jemných sedimentů (a s tím spojených látkových odvodů) z urbánního prostředí. Podíl důlních štol na látkových odnech musí být postaven na lépe zjištěné výpovědi o odváděném množství vody. Pokud jde o retenci sedimentů a znečišťujících látek v údolních nivách a předhrází, je třeba na české straně provést systematické průzkumy. Na německé straně by měly být zpracovány studie na reprezentativních měřicích bozech na horním toku Labe, na stupu Labe do středního úseku, mezi Mulde a Sálo a dále pod ústím Sály až po Havelberg a obecně na reprezentativních lesních a sukcesních lokalitách. Pro přítoky kategorií 1 obecně chybějí podložené výpovědi o retenci sedimentů v údolních nivách. Je třeba analyzovat úlohu velkých vodních toků jako uložit znečišťujících látek. Ve slopovém úseku Labe je třeba zdokumentovat funkci labských raman jako uložit sedimentů a vyhodnotit jejich význam pro bilanci znečišťujících látek (viz kap. 6.5). Na horních úsecích řek, ale i na menších vodních tokích horských oblastí a vysoko představují vnoсоn jemných sedimentů z plochy povodí hlavní překážku pro dosažení dobrého stavu. Tento proces zanášení toků bahnem je nutno prozkoumat. Ve výsledku je třeba odvdat doporučené postupy pro minimalizaci rizik.

- **Dopady povodňově v červnu 2013.** Pro odhad následků povodňové by měly být v národní kompetenci provedeny mimořádné programy měření.
Účinnost opatření

Vzhledem k přirozeně variabilitě sedimentačního / re-mobilizačního systému pro bilancované území vnitrozemského úseku Labe bude třeba stanovit kontrolu úspěšnosti pro partikulárně vázané znečišťující látky pouze podle meziročního průběhu trendů v rámci rozsahu kolísání, popsaného zejména v kapitole 6.2, a ne tolik podle odvozeného snížování látkových odnosů na základě referenčních let nebo dlouhodobějších průměrů. Hodnocené období let 2003 až 2011 zahrnuje jak roky s velkými, tak i roky s malými průtoky a transportem plavenin, a je tudíž základem pro odhad změn v průběhu roku v rámci daného rozsahu kolísání.

Stěžejní body doporučených postupů z hlediska kvality spočívají (1) v odstranění recentních vnějších zdrojů vnosu a zlepšení datové základny ve vazbě na plochy s podezřením na staré zátěže a (2) v sanači úložišť starých sedimentů a v péči o přechodná úložiště jemných sedimentů, a to pokud možno v blízkostí (historického) zdroje. Pokud budou provedená opatření kategorie 2, měla by být jejich účinnost kontrolována pomocí cíleného monitorování stavu těchto úložišť po jejich vyklizení a recentní vnější zdroje by měly být buďto již uzavřeny, nebo by jejich uzavření mělo následovat v co nejblíží době.

Z kvantitativního a hydromorfologického hlediska je v doporučených postupech pozornost zaměřena na zlepšení průchodnosti pro sedimenty a bilance sedimentů, resp. průtokového režimu. Dopady příslušných opatření se zřetelom také na ostatní indikátory se projeví v krátkodobém, střednědobém a dlouhodobém horizontu. Vyhledávky na úspěch jednotlivých lokálních opatření, např. ke zlepšení struktury habitátů, je třeba v každém případě prověřit také v porovnání s oběma klíčovými ukazateli (průchodnost pro sedimenty a bilance sedimentů, resp. ovlivnění hydrologického režimu) a v kontextu koncepcí s do-sahem pro více úseků a v souvislosti s kombinací možných opatření. Pokud jde o prostorové přiřazení doporučených postupů pro úsek toku s obdobnými drcity, měla by být provedena systematická analýza dopadů a vzájemného působení mezi těmito úseky.

Další účely využití a regulační předpisy

Z účelů využití, kterých se dotýká nakládání se sedimenty a které nakládání se sedimenty ovlivňují, zaujímá významnou úlohu plavba, která byla proto v rámci této koncepce také pojednána explicitně. Ostatních forem využívání vodních toků a jejich utváření, jako je ochrana před povodněmi, péče o údolní nivy a hospodaření na zemědělských plochách obecně (vnoř jemných sedimentů, zanášení vodotečí bahnem) se těma sedimentům rovněž dotýká. Vzájemné ovlivnění zde bylo zohledněno pouze částečně, např. tím, že do odvození pravděpodobné hodnot pro znečišťující látky byly zahomly úrovně regulačních předpisů pro lidské zdraví a ochranu půdy (zemědělství) nebo byly výrazy v úvahu jako okrajové podmínky pro aspekty kvantity a hydromorfologie (ochrana před povodněmi). Systematická analýza z perspektivy dalších forem využívání vod, resp. stresorů pro stav sedimentů nebyla dosud provedena.

Další formy využívání vod, resp. stresory otevírají zároveň otázku dalších relevantních oblastí regulačních předpisů, než je oblast vodního hospodaření. Zapojení dalších oblastí regulačních předpisů do řešení pojednávaných problémů (přístup zasahující různá environmentální média) je nezbytné důkladně promyslet. Tento požadavek se objevuje u všech tří hlavních aspektů a týká se nejen problematiky starých ekologických zátěží nebo ochrany půd, ale stejně tak i ochrany před povodněmi či ochrany přírody. Měla by být provedena systematická analýza vzájemných vlivů s ostatními oblastmi regulačních předpisů.
A1 SEZNAM LITERATURY
254/2001 Sb.: Zákon č. 254/2001 Sb., o vodách a o změně některých zákonů (vodní zákon)

98/2011 Sb.: Vyhláška č. 98/2011 Sb., o způsobu hodnocení stavu útvarů povrchových vod, způsobu hodnocení ekologického potenciálu silně ovlivněných a umělých útvarů povrchových vod a náležitostech programů zjišťování a hodnocení stavu povrchových vod

Amos, C. L., Mosher, D. C. (1985): Erosion and deposition of fine-grained sediments from the Bay of Fundy. Sedimentology, 32, 815 – 832

Baborowski, M., v. Tümpling, W., Friese, K. (2004): Behaviour of suspendend particulate matter (SPM) and selected trace metals during the 2002 summer flood in the River Elbe (Germany) at Magdeburg monitoring station. Hydrology and Earth System Sciences, 8 (2), 135 – 150

DIN EN 14614 (2005): Wasserbeschaffenheit – Anleitung zur Beurteilung hydromorphologischer Eigenschaften von Fließgewässern (M 40)

DIN EN 15843 (2010): Wasserbeschaffenheit – Anleitung zur Beurteilung von Veränderungen der hydromorphologischen Eigenschaften von Fließgewässern (M 43)

Ferenčík M., Schovánková J. (2013): Výskyt polárních kontaminanů (pesticidů a farmak) v sedimentovatelných plavéních v povodí Labe. In: Sborník konference Sedimenty vodných toků a nádrží, SVS ZSVTS Bratislava

HPA a BSU (2012): Handlungskonzept Umlagerung von Baggergut aus dem Hamburger Hafen in der Stromelbe. Hamburg Port Authority und Behörde für Stadtentwicklung und Umwelt, Hamburg

IWS (2013a): Erosionsmessung Elbe-Buhnenfelder, Technischer Bericht Nr. 04/2013 des Instituts für Wasser- und Umwelt systemmodellierung (IWS) der Universität Stuttgart im Auftrag der Bundesanstalt für Gewässerkunde, Koblenz

IWS (2013b): Ermittlung des Remobilisierungspotentials belasteter Altsedimente in ausgewählten Gewässern Sachsen-Anhalts, Technischer Bericht Nr. 05/2013 des Instituts für Wasser- und Umwelt systemmodellierung (IWS) der Universität Stuttgart im Auftrag des Landesbetriebs für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt, Halle

Langhammer, J. (2013): Mapování a hodnocení hydromorfologického stavu vybraných úseků toku Labe ve vazbě na nakládání se sedimenty. PIF UK, Praha, 70 s.

LAWA (1999): Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland. Übersichtsverfahren. Roth

LAWA (2002): Empfehlung Gewässerstrukturgütekartierung in der BRD. Verfahren für mittelgroße bis große Fließgewässer. o. O.

MKOL (1995): Akční program Labe. Mezinárodní komise pro ochranu Labe, Magdeburg

MKOL (2013): Údržba povrchových vod využívaných pro plavební účely v povodí Labe s ohledem na zlepšení ekologického stavu / potenciálu. Mezinárodní komise pro ochranu Labe, Magdeburg

Owens, P. N. (2005): Conceptual models and budgets for sediment management at the river basin scale. J. Soils and Sediments 5, 201 – 212

SedBiLa : Význam Bilíny jako historického a současného zdroje znečištění pro nakládání se sedimenty v povodí Labe. Povodí Labe, s. p., Hradec Králové. Zpracováno v pověření Úřadu pro rozvoj města a životní prostředí (BSU). Úřad pro ochranu životního prostředí, projekt ELSA Svobodného a hranovního města Hamburk (http://elsa-elbe.de/assets/download/fachstudien/Fachstudie_Sedbila_zprava_CZ.pdf)

SedLa (v přípravě): Význam Bilíny starých sedimentů v Labi a jeho postranních strukturách v úseku od Pardubic po soutok s Vltavou. Univerzita Karlova v Praze. Zpracováno v pověření Úřadu pro rozvoj města a životní prostředí (BSU). Úřad pro ochranu životního prostředí, projekt ELSA Svobodného a hranovního města Hamburk

Weise, J. (2011): Baggergutverbringung Elbe – Saale. Informationsveranstaltung im Ministerium für Landwirtschaft und Umwelt Sachsen-Anhalt, Magdeburg, 05.05.2011

A2 POUŽITÉ METODY
A2 POUŽITÉ METODY

A2-1 Posuzovaný systém .. 88
A2-2 Datové podklady k aspektu kvantity ... 91
A2-3 Výběr znečišťujících látek relevantních pro Labe a klasifikace plavenin a sedimentů v referenčních profilech... 95
A2-4 Analýza hydromorfologických rizik na vnitrozemském úseku Labe v kontextu koncepce pro nakládání se sedimenty ... 104
A2-5 Hydromorfologické zdokumentování a hodnocení estuáru slapového úseku Labe ve smyslu koncepce pro nakládání se sedimenty ... 110
A2-6 Analýza rizik z hlediska kvality .. 122
A2-7 Odhad množství sedimentů a starých sedimentů v zónách se zklidněným prouděním a odhad potenciálu odnosit ... 124
A2-8 Možnost remobilizace sedimentů .. 133
A2-9 Odhad vnosů z bodových zdrojů ... 141
A2-10 Inventarizace starých ekologických zátěží na toku, významných pro jakost sedimentů............................ 142
A2-11 Výpočet látkových odnosit a jejich znázornění v podélném profilu Labe .. 151
A2-12 Bilance látkových odnosit .. 154
V souvislosti s vypracováním koncepce pro nakládání se sedimenty bylo zapotřebí definovat posuzovaný systém v jeho relevantních částech. To bylo třeba provést pro každý ze tří hlavních aspektů na základě nadregionální rizikové analýzy příčin, resp. zdrojů, která byla stanovena jako cíl pro prioritizaci deficitů a k odvození doporučených postupů za účelem plánování budoucích opatření. Systém se skládá z těchto částí:

(1) Tok Labe. Tok Labe je v kontextu Koncepce MKOL pro nakládání se sedimenty rozdělen na regulačně náhonový, náhonový vnitrozemský úsek Labe po její hraničním průtrvání po jeho povodí (v ČR ř. km 767,7 – v SRN ř. km 585,9) a sloupek povodí Labe po její povodí (v ČR ř. km 772,7). V rizikové analýze jsou pojednávány vzniklé vlivy řeky a údolní nivy / předhrází jako jeden faktor.

(2) Přílohy. Významné jsou takové přílohy, které mají nadregionální vliv minimálně v jednom ze tří hlavních aspektů – kvalita, kvantita, hydromorfolgie. (3) Referenční profily. Referenční profily slouží k charakterizaci dílčího povodí, které je relevantní pro nadregionální management sedimentů z kvalitativního nebo kvantitativního hlediska.

Stanoveni referenčních profilů
V tabulce T-A2-1-1 jsou obsaženy všechny významné informace o referenčních profilích, které byly využity v rámci koncepce pro nakládání se sedimenty. Tyto referenční profily představují z hlediska kvality a kvantity míst, kde lze na základě co nejefikátnější dostupné datové základní charakterizovat relevantní dílčí povodí pro účely nadregionálního managementsu sedimentů. Jednotlivá použitá data jsou uvedena v tabulkách T-A4-1 a T-A4-2 v příloze 4 nebo si je lze vyžádat od příslušných správců dat.

V české části povodí Labe tvoří referenční profily kvality vybrané měřiče stanice programů státního monitoringu jakosti vod v gesci Českého hydrometeorologického ústavu (ČHMU), zaměřených na kompletní monitoring a situating monitoringu v souladu s požadavky Rámcové směrnice o vodách, a programů správců povodí, zaměřených na provozní monitoring povodí Labe, Vltavy a Ohře. Profily sledování změněných subjektů jsou v řadě případů toočné a vzájemně se doplňují typem monitorovaných měřičů. Monitoring ČHMU je zaměřen na sledování jakosti pevných matric – plamenin a sedimentů, zatímco provozní monitoring správců povodí zahrnuje sledování ve vodné fázi, v sedimentech a sedimentovatelných plaveninách.

Referenční profily kvantity v České republice jsou zastoupeny výhradně měrnými profily státní hydrologické sítě s denním vyhodnocováním průtoků vody a koncentrací plamenin, provozované Českým hydrometeorologickým ústavem. Ve většině případů byl současně ne amplificáci profily monitoringu jakosti vod.

Celkově bylo stanoveno 13 referenčních profilů s verifikovanými datovými podklady ze státní monitorovací sítě, které charakterizují jak hydrologické poměry, tak míra znečištění ve vazbě na zdroje v dílčích úsecích toku Labe a v závěrečných profilích příloh.

U německých referenčních profilů zaměřených na aspekt kvality se jedná o měrné profily spolkových zemí, kde jsou zpravidla k dispozici dlouholeté řady dat získaných v rámci kvalitativně zabezpečených monitorovacích programů (tab. T-A2-1-1).

U referenčních profilů zaměřených na aspekt kvantity se jedná o měrné profily spolkových orgánů nebo spolkových zemí (tab. T-A2-1-1). Pokud bylo možné, byly u aspektu kvantity vybrány měrné profily zařazené do hydrologické koncepce Spolkové vodní a plavební správy (WSV). To platí průběžně pro tok Labe a relevantní přílohy Sálu a Havolu (spolkové vodní cesty). Pro tento postup byly rozhodující tyto důvody:

(1) Časové rozlišení měření podle uvedené koncepce WSV je výrazně lepší, než rozlišení měření prováděných na referenčních profilích kvality pomocí ukazatelů průtok a koncentrace plamenin (nerozpuštěné látky). Na měrných profilích WSV (kvantita) se ročně provádí 250 stanovení koncentrace plamenin, naproti tomu na prostorově srovnatelných měrných profilích kvality jen přibližně 10 stanovení za rok.

(2) Prostorová hustota, a tím i rozlišení měrných profilů WSV je výrazně větší. Měřicí síť WSV obsahuje referenční profily v dostatečném prostorevém rozlišení na toku Labe, také zeměpisná nad i pod soutokem všech relevantních příloh kategorie 1, což umožňuje balancovat látkové odnossy v podélém profilu Labe. Zpracovat takové bilance.
V porovnatelné kvalitě by pomocí dat z měřicí sítě kvality nebylo možné.
(3) Systémové shrnutí odnose plavenin v podbmém profilu Labe, které byly zjištěny v rámci těchto dvou různých měřicích sítí, by vedlo k výrazným, metodicky podminěným nesrovnalostem v bilanci toku (Naumann et al. 2003, BFG 2013).
(4) Kombinace z co nejlepších odhadů zaměřených na aspekt kvality a kvantity umožňuje provádět také co nejlepší odhad odnose znečišťujících látek.

Výběr relevantních pří toků
Stanovení relevantních pří toků v kontextu koncepcie pro nakládání se sedimenty proběhlo ve dvou krocích:
(1) U pří toků kategorie 1 se na základě jejich kvantitativních charakteristik (průtok, odnos plavenin) v podstatě předpokládá významný vliv na situaci v hlavním toku z hlediska všech tří hlavních aspektů. Kritériem významnosti je minimálně 10% podíl na průměrném odnosu plavenin v příslušném referenčním profilu pod soutokem s Labem. Relevantními pří toky kategorie 1 v české části povodí jsou Orlice, Jizera, Vltava a Ohře, v němčce části povodí je to Černý Halštrov (Schwarze Elster), Mulde, Sála (Saaele) a Havola (Havel). Kvantitativní charakteristiky na základě dat z let 2003 – 2008 jsou obsaženy v tabulce T-A4-1.
(4) Přítoky kategorie 2b se většinou do přítoku kategorie 1. V české části povodí Labe to je řeka Berouna a Sázava, v němčce části povodí Labe to jsou zdrojnice řeky Mulde Zwickauer Mulde a Freiberger Mulde (Moldavský potok), dále Spittelwasser (dlíči povodí Mulde), Bílý Halštrov (Weiße Elster), Schlenze, Bode (dlíči povodí Sály) a Spréva (dlíči povodí Havoly). Přehled výsledků prověření významnosti přítoků kategorie 2b uvádí tabulka T-A2-1-2.

Tab. T-A2-1-1: Relevantní vodní toky a referenční profily

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Vodní tok</th>
<th>Aspekt</th>
<th>Referenční profil</th>
<th>Program měření</th>
<th>Provozovatel</th>
<th>Provozovatel databáze</th>
<th>Vodočet</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Orlice</td>
<td>kvalita</td>
<td>Nepasice</td>
<td>CHMÚ, Povodí Labe, státní podnik</td>
<td>CHMÚ – IS ARROW</td>
<td>Týniště n. O.</td>
<td></td>
</tr>
<tr>
<td>kvantita</td>
<td>Týniště n. Orlici</td>
<td>CHMÚ</td>
<td>CHMÚ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Němčice</td>
<td>CHMÚ, Povodí Labe, státní podnik</td>
<td>CHMÚ – IS ARROW</td>
<td>Němčice</td>
<td></td>
</tr>
<tr>
<td>kvantita</td>
<td>Němčice</td>
<td>CHMÚ</td>
<td>CHMÚ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Vltava</td>
<td>MKOL, CHMÚ, Povodí Labe, s. p.</td>
<td>CHMÚ – IS ARROW</td>
<td>Přelouč</td>
<td></td>
</tr>
<tr>
<td>kvantita</td>
<td>Vltava</td>
<td>CHMÚ</td>
<td>CHMÚ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Lysá n. L.</td>
<td>MKOL, CHMÚ, Povodí Labe, s. p.</td>
<td>CHMÚ – IS ARROW</td>
<td>Nymburk</td>
<td></td>
</tr>
<tr>
<td>kvantita</td>
<td>Lysá n. L.</td>
<td>CHMÚ</td>
<td>CHMÚ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Jizera</td>
<td>kvalita</td>
<td>Tuřice (Předměřice)</td>
<td>CHMÚ, Povodí Labe, státní podnik</td>
<td>CHMÚ – IS ARROW</td>
<td>Tuřice</td>
<td></td>
</tr>
<tr>
<td>kvantita</td>
<td>Tuřice</td>
<td>CHMÚ</td>
<td>CHMÚ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Obříství</td>
<td>MKOL, CHMÚ, Povodí Labe, s. p.</td>
<td>CHMÚ – IS ARROW</td>
<td>Kostelec n. L.</td>
<td></td>
</tr>
<tr>
<td>kvantita</td>
<td>Obříství</td>
<td>CHMÚ</td>
<td>CHMÚ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2a</td>
<td>Sázava</td>
<td>kvalita</td>
<td>Nespeky</td>
<td>CHMÚ, Povodí Vltavy, státní podnik</td>
<td>CHMÚ – IS ARROW</td>
<td>Nespeky</td>
<td></td>
</tr>
<tr>
<td>kvantita</td>
<td>Nespeky</td>
<td>CHMÚ</td>
<td>CHMÚ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2b</td>
<td>Berounka</td>
<td>kvalita</td>
<td>Srbisko, Lahovicke</td>
<td>CHMÚ, Povodí Vltavy, státní podnik</td>
<td>CHMÚ – IS ARROW</td>
<td>Beroun</td>
<td></td>
</tr>
<tr>
<td>kvantita</td>
<td>Srbisko</td>
<td>CHMÚ</td>
<td>CHMÚ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Vltava</td>
<td>kvalita</td>
<td>Zelín</td>
<td>MKOL, CHMÚ, Povodí Vltavy, s. p.</td>
<td>CHMÚ – IS ARROW</td>
<td>Vraňany</td>
<td></td>
</tr>
<tr>
<td>kvantita</td>
<td>Vraňany</td>
<td>CHMÚ</td>
<td>CHMÚ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Ohře</td>
<td>kvalita</td>
<td>Terezín</td>
<td>MKOL, CHMÚ, Povodí Ohře, s. p.</td>
<td>CHMÚ – IS ARROW</td>
<td>Louny</td>
<td></td>
</tr>
<tr>
<td>kvantita</td>
<td>Louny</td>
<td>CHMÚ</td>
<td>CHMÚ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kategorie: L = Labe, P1 = přítoky kategorie 1, P2a = přítoky kategorie 2a, P2b = přítoky kategorie 2b, *kvantita = velmi podrobná měření plavenin
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Vodní tok</th>
<th>Aspekt</th>
<th>Referenční profil</th>
<th>Program měření</th>
<th>Provozovatel</th>
<th>Provozovatel databáze</th>
<th>Vodočet</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2a</td>
<td>Bíliny</td>
<td>kvalita</td>
<td>Ústí n. L.</td>
<td>ČHMÚ, Povodí Ohře, státní podnik</td>
<td>ČHMÚ – IS ARROW</td>
<td>ČHMÚ – IS ARROW</td>
<td>Trnici</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Trmice</td>
<td>ČHMÚ</td>
<td>ČHMÚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Děčín</td>
<td>MKOL, Povodí Labe, státní podnik</td>
<td>Povodí Labe, s. p.</td>
<td>ČHMÚ – IS ARROW</td>
<td>Děčín</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Děčín</td>
<td>ČHMÚ</td>
<td>ČHMÚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Dolní Žeb</td>
<td>ČHMÚ</td>
<td>ČHMÚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Dolní Žeb</td>
<td>ČHMÚ</td>
<td>ČHMÚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Hřenská/Schnižka</td>
<td>situacní monitoring, MKOL, FGG Elbe</td>
<td>BIUL</td>
<td>LIULG</td>
<td>Schöna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Prina</td>
<td>WSV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2a</td>
<td>Treibisch</td>
<td>kvalita</td>
<td>ústí (do Labe)</td>
<td>zemský provozní monitoring</td>
<td>BIUL</td>
<td>LIULG</td>
<td>Garsebach</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*kvantita</td>
<td>žádný</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Zehren</td>
<td>situacní monitoring, FGG Elbe</td>
<td>BIUL</td>
<td>LIULG</td>
<td>Dražďany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*kvantita</td>
<td>Torgau</td>
<td>WSV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Schwarze Elster (Černý Haštův)</td>
<td>kvalita</td>
<td>Gorsdorf</td>
<td>MKOL, FGG Elbe</td>
<td>LHW</td>
<td>LIULG</td>
<td>Gorsdorf (Löben)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Gorsdorf</td>
<td>LHW</td>
<td>LIULG</td>
<td>Gorsdorf (Löben)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Wittenberg</td>
<td>FGG Elbe</td>
<td>LIULG</td>
<td>Wittenberg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Wittenberg</td>
<td>WSV</td>
<td></td>
<td>Wittenberg</td>
<td></td>
</tr>
<tr>
<td>P2b</td>
<td>Freiberger Mulde (Moldavský polok)</td>
<td>kvalita</td>
<td>ústí Erlín</td>
<td>situacní monitoring</td>
<td>BIUL</td>
<td>LIULG</td>
<td>Erlín</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*kvantita</td>
<td>žádný</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2b</td>
<td>Zwicklauer Mulde</td>
<td>kvalita</td>
<td>ústí Sermuth</td>
<td>situacní monitoring</td>
<td>BIUL</td>
<td>LIULG</td>
<td>do r. 2006 Grosse,Muth od r. 2007 Colditz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*kvantita</td>
<td>žádný</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2b</td>
<td>Spittelwasser</td>
<td>kvalita</td>
<td>Schachtgraben</td>
<td>LHW</td>
<td>LIULG</td>
<td>LHW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Schachtgraben</td>
<td>LHW</td>
<td>LIULG</td>
<td>LHW</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Mulde</td>
<td>kvalita</td>
<td>Dessau</td>
<td>MKOL, FGG Elbe</td>
<td>LIULG</td>
<td>Bad Döben</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Dessau</td>
<td>LW</td>
<td>LIULG</td>
<td>Bad Döben</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Breitenhagen</td>
<td>Barby</td>
<td>WSV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Barby</td>
<td>WSV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2b</td>
<td>Weiße Elster (Bílá Haštův)</td>
<td>kvalita</td>
<td>Halle-Ammendorf</td>
<td>MKOL, FGG Elbe</td>
<td>LIULG</td>
<td>Oberthau</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Oberthau</td>
<td>LW</td>
<td>LIULG</td>
<td>Oberthau</td>
<td></td>
</tr>
<tr>
<td>P2b</td>
<td>Schienez</td>
<td>kvalita</td>
<td>nad ústím Sály</td>
<td>LW</td>
<td>LIULG</td>
<td>Friedeburg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Friedeburg</td>
<td>LW</td>
<td>LIULG</td>
<td>Friedeburg</td>
<td></td>
</tr>
<tr>
<td>P2b</td>
<td>Bode</td>
<td>kvalita</td>
<td>Neugattersleben</td>
<td>FGG Elbe</td>
<td>LW</td>
<td>Neugattersleben (Staßfurt)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Neugattersleben</td>
<td>LW</td>
<td>LIULG</td>
<td>Neugattersleben (Staßfurt)</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Saale (Sála)</td>
<td>kvalita</td>
<td>Rosenberg</td>
<td>MKOL, FGG Elbe</td>
<td>LW</td>
<td>Calbe-Grizehne</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Calbe</td>
<td>LW</td>
<td>LIULG</td>
<td>Calbe-Grizehne</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Magdeburg</td>
<td>MKOL, FGG Elbe</td>
<td>LW</td>
<td>LIULG</td>
<td>Barby</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Barby</td>
<td>LW</td>
<td>LIULG</td>
<td>Barby</td>
<td></td>
</tr>
<tr>
<td>P2b</td>
<td>Spree (Spréva)</td>
<td>kvalita</td>
<td>Sophienwerder</td>
<td>situacní monitoring, MKOL, FGG Elbe</td>
<td>SenStadtUm, Berlin</td>
<td>SenStadtUm, Berlin</td>
<td>Sophienwerder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Sophienwerder</td>
<td>SenStadtUm, Berlin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Havel (Havola)</td>
<td>kvalita</td>
<td>Havelberg (Toppel)</td>
<td>MKOL, FGG Elbe</td>
<td>LW</td>
<td>Rathenow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Rathenow</td>
<td>LW</td>
<td>LIULG</td>
<td>Rathenow</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Cumlozen</td>
<td>FGG Elbe</td>
<td>LW</td>
<td>Liu</td>
<td>Wittenberge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Wittenberge</td>
<td>LW</td>
<td>LIULG</td>
<td>Wittenberge</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Schnackenburg</td>
<td>MKOL, FGG Elbe</td>
<td>LW</td>
<td>LW</td>
<td>Wittenberge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Hitzacker</td>
<td>LW</td>
<td>LIULG</td>
<td>Wittenberge</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Labe</td>
<td>kvalita</td>
<td>Seemannshöft</td>
<td>MKOL, FGG Elbe</td>
<td>LW</td>
<td>NWK</td>
<td>Neu Darchau</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kvalita</td>
<td>Jánův</td>
<td>LW</td>
<td>LIULG</td>
<td>Neu Darchau</td>
<td></td>
</tr>
</tbody>
</table>

Kategorie: L = Labe, P1 = přílohy kategorie 1, P2a = přílohy kategorie 2a, P2b = přílohy kategorie 2b, *kvantita = velmi podrobná měření plavenín
<table>
<thead>
<tr>
<th>Přítok</th>
<th>Referenční profil</th>
<th>Relevantní znečišťující látky</th>
<th>Roky s podílem ročního odnosu >10 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DDX</td>
<td>2003 – 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB</td>
<td>2003, 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PeCB</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCB</td>
<td>2004</td>
</tr>
<tr>
<td>Sázava</td>
<td>Zelčín</td>
<td>As</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pb</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ni</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td>Berounka</td>
<td>Zelčín</td>
<td>As</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cd</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pb</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ni</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td>Triebsch</td>
<td>Zehren</td>
<td>Cd</td>
<td>2008</td>
</tr>
<tr>
<td>Moldavský potok (Freiberger Mulde)</td>
<td>Dessau</td>
<td>As</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cd</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td>Zwickauer Mulde</td>
<td>Dessau</td>
<td>As</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cd</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td>Spittelwasser</td>
<td>Dessau</td>
<td>Zn</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-HCH</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-HCH</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ-HCH</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TBT</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dioxiny / furany</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TBT</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Σ 5 PAU</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td>Schlenze</td>
<td>Rosenberg</td>
<td>Cd</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zn</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pb</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td>Bode</td>
<td>Rosenberg</td>
<td>Cu</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α-HCH</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β-HCH</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ-HCH</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TBT</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dioxiny / furany</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Σ 5 PAU</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td>Spréva</td>
<td>Toppel</td>
<td>Cu</td>
<td>2003 – 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zn</td>
<td>2003 – 2008</td>
</tr>
</tbody>
</table>

A2-2 DATOVÉ PODKLADY K ASPEKTU KVANTITY

Indikátory kvantity jsou průtok (Q), koncentrace plavenin (Cs) a odnos plavenin (Ss). Jsou rozhodující pro výběr relevantních přítoků kategorie 1 a představují pomocné veličiny v souvislosti s analýzou rizik na základě aspektů kvality, hydromorfologie a plavby. Pro charakteristiky indikátorů kvantity odvozené v kontextu koncepce pro nakládání se sedimenty byly na základě dostupných dat MKOL, resp. národních správních orgánů zpracovány co nejlepší odhady. Jako referenční období bylo v zásadě stanoveno období let 2003 – 2008 (Cs, Ss), resp. 1961 – 2005 (Q). Příslušná odvozená data pro referenční proflí v České republice a v Německu jsou obsaženy v tabulce T-A4-1. Pro bilancování odnosů vybraných znečišťujících látek bylo nutné rozšířit posuzované období až do roku 2011. V tomto smyslu byly připraveny také kvantitativní charakteristiky, do kterých se promyly výpočty látkových odносů (tab. T-A4-2).

Datové podklady v České republice

Konzentrace plavenin jsou sledovány a vyhodnocovány v denním kroku, aby bylo možno co nejefektivněji zaznamenat změny v transportu plavenin. Odběry vzorků vody pro stanovení koncentrací plavenin zajišťuje na vodoměrých stanicích dobrovolná pozorovatelé. Odběry se provádí ručním vzorkovačem integračním způsobem v předem určené svěrsici na základě celoprofilových měření. V současné době jsou na vybraných stanicích v provozu automatické vzorkovače plavenin – samplers ISCO 6712. Odebírané vzor-
ky o objemu 1 l jsou skladovány v PET lahvích ve vodoměrých stanicích a 1x měsíčně odváženy do akreditovaných laboratoří oddělení jakosti vody ČHMÚ, kde se provádí stanovení koncentrací plavenin v mg/l gravimetrickou metodou dle ČSN EN 872 (obr. B-A-2-2-1a).

Data použitá pro výpočet kvantitativních charakteristik a pro výpočty látkových odvodů vychází ve většině referenčních profilů z denně naměřených údajů. Případné chybějící denní údaje koncentrací plavenin byly doplněny odborným odhadem dle srážkooodtokových poměrů. V případě, že na některých referenčních profilích nebyla data denních koncentrací plavenin k dispozici (odbor 2008 – 2011 v souvislosti se zaváděním nové automatické technologie odběru vzorků, nahrazující ruční odběr), byly použity údaje ze stanovení nerozpustěných látek v měsíčně odebraných vzorcích vody monitoringu správců povodí. Jedná se o stanice Ohře – Terezín a Blína – Ústí n. L.

K výpočtu odvodů plavenin jsou používány hodnoty průtoků vody z točených stanic, případně hodnoty průtoků vody z neblížší vodoměrů stanice za použití přepočítávacího koeficientu. Zdrojem veškerých použitých dat indikátorů kvality je hydrologická databanka – Hydrofond ČHMÚ, která shromažďuje verifikované naměřené údaje vodních stavů, vyhodnocených průtoků vody a údaje o denních koncentracích plavenin.

Datové podklady v Německu
V Německu provozuje Vodní a plavební správa (WSV) SRN hustou síť vodoměrných stanic. Ve správě WSV je celkem 170 vodoměrých stanic se sledováním průtoků. Z tohoto počtu vodoměrých stanic leží 13 na Labi. K naměřeným vodním stavům se přiřazují hodnoty průtoků prostřednictvím vztahů mezi vodním stavem a průtokem (tabulka průtoků odpovídajících vodním stavům hladin).

Data obsahu plavenin v povodí Labe sledují zásadně spolkové orgány a zemské orgány státní správy. V případě spolkových vodních cest vycházejí charakteristiky v tabulce T-A4-1 z dat získaných ze sítě vodoměrů stanic, resp. z denních průměrů trvalé měřicí sítě plavenin WSV (odúvodnění viz kapitola 2 a příloha A2-1). Tato měření jsou doplněna o data z programů měření spolkových zemí, pokud jsou taková měření k dispozici. V případě zemských vodních toků je používána nejlepší dostupná datová základna, která je k dispozici u příslušných provozovatelů referenčních profilů. Kompletní přehled vodoměrů stanic, referenčních profilů kvantity, zodpovědných provozovatelů a správců dat je uveden v příloze A2-1.

Odnos plavenin je velmi dynamický, tj. vykazuje vyso- kou časovou proměnlivost v závislosti na průtoků a srážkách. Tato vysoká časová proměnlivost je v Německu dokumentována pouze v rámci celostátní trvalé měřicí sítě plavenin WSV. Shromážděná data nerozpustěných látek v rámci monitorování vod (Koordinovaný program měření Labe FGG Elbe – KEMP) nemají porovnatelnou četnost prováděných měření. Nejlepší dostupná datová základna v kontextu zpracování koncepce pro nakládání se sedimenty Labe se proto rozhodující měrou opírá o denní průměry trvalé měřicí sítě plavenin WSV (BfG 2014a) a je doplněna o data ze strany spolkových zemí, pokud jsou taková data k dispozici, např. porovnáním s průběhem průtoků kontinuálních měření základu v rámci národního programu měření KEMP.

O měřicí sítě plavenin WSV na spolkových vnitrozemských vodních cestách se po odborné a technické

V případě, že pro výpočet kvantitativních ukazatelů C₅₀ resp. S₅₀ nebyly k dispozici hodnoty měření s velkou četností v rámci měření vody plavení WSV, byly použity hodnoty ukazatele „nerozpuštěné látky“ získané v rámci zemských programů měření. Tento ukazatel se stanovuje podle normy DIN 38409 H2-2, resp. H2-3. U alikvotní části vzorku vody se provádí tlaková nebo vakuovalá filtrace přes papírový nebo skleněný filtr a koncentrace plavenin se přepočítává z hmotnosti sušiny vztažené na objem vzorku. Metodický postup tedy odpovídá metodě používané ve WSV nebo v BFG.

Četnost měření kolísá v závislosti na ročním období a referenčním profilu. Zpravidla se vzorky odebrávají jednou měsíčně. Vzhledem k výrazně nižší četnosti měření je třeba v porovnání s daty z měřicí sítě plavení WSV nutno vycházet z vyššího potenciálu chyb.

Pro odhad odnosa plavení byly zohledněny hodnoty průtoků z nejbližší vodoměrné stanice.

Základem tabulek průtoků odpovídajících vodním stavům jsou prováděná měření průtoků. Z těchto hodnot jsou vytvořeny tabulky průtoků a jejich pro-střednictvím se pak opětovně analyzuje jejich další využitelnost. Přesnost měření tedy přispívá rozhodujícím způsobem k přesnosti vypočetěných průtoků. Pokud jde o citlivost měření průtoků, je třeba rozlišovat mezi přesností záznamu vodních stavů během prováděného měření a samotným měřením průtoků. Při odhadu přesnosti měření průtoků se musí analogicky jako při odečítání vodních stavů rozlišovat mezi měřením průtoků při nízkých, průměrných a vysokých vodních stavech. Přesnost měření průtoků je do značné míry závislá na místních podmínkách v příslušném vodoměrném profilu, obecně platné výpovědi pro všechny vodoměrné profily je nejsou možné. Celkově lze očekávat tendenci, že měření průtoků za průměrných podmínek lze dokumentovat lepe než při extrémně velkých průtociích. Při mimořádně velkých průtociích není odkotová situace vždy jasně definována, dochází k nárůstu turbulencí a zaplavení předhrází. Kromě toho se během měření v povodňové vlně průtok mění z důvodu hydrologické situace. Podle zkušeností některých provozovatelů vodoměrných profilů je měření průtoků při nízkých stavech vody zatíženo nejistotou v rozsahu ± 5 %. Za průměrných stavů vody tento rozptyl klesá na cca ± 3 % a při měření průtoků v případě povodní narůstá na ± 5 až ± 10 %. V případě extrémních povodní může tento rozptyl dosáhnout ± 10 až ± 20%. V rámci
měření průtoku se používají různé postupy. U velkých profilů se v posledních letech využívá především měření metodou ADCP (Steinrücke et al. 2010).

Nejistoty ve výsledcích ohledně C_a a S_a vznikají zejména v souvislosti s přesností aplikovaných metod měření a reprezentativnosti dat. Výsledky je závislé na poloze jednobodového místa odběru a jeho reprezentativnosti pro celý příčný profil toku, na dostatečné přesném měření v případě nízkých průtoků a povodní, na provedení odběru vzorku v praxi a na způsobu metody filtrace. Zanedbání horizontálních gradientů koncentrací například pod zaústěním přítoků může v závislosti na poloze místa odběru vést k nadhodnocení nebo podhodnocení zjištěných koncentrací plavenin, a tím tedy i k nadhodnocení nebo podhodnocení odnosi plavenin. Zanedbání vertikálních gradientů koncentrací ke dnu koryta vede při odběru vzorků z hladiny k podcenění vypočteného odnosu plavenin.

Nejistoty při měření zákalu pomocí sond jsou silně závislé na tom, zda je prováděna průvodní kalibrace optických signálů a podle toho i odpovídající přepočet na koncentraci plavenin. Zákal je opticky subjektivním dojmem. Vzniká absorpcí a rozptylem světla na nerozpuštěné pevné matrice ve vodě. V závislosti na počtu částic, jejich tvaru, velikosti a složení se mění i stupeň zákalu. Standardním technickým přístrojem pro stanovení zákalu jsou optické sondy, které měří rozptýlené světlo v úhlu 90° (ISO 7027/DIN EN 27027). Vzhledem k tomu, že zákal není žádnou pevně definovanou veličinou, musí být tyto optické sondy kalibrávány pomocí porovnávacích standardů. **Na obrázku B-A2-2-2 je znázorněn vliv průměrné znitosti na stupeň zákalu při konstantní koncentraci plavenin.**

Obr. B-A2-2-2: Vliv průměrné znitosti (D_m) na měření zákalu (BFG 2013a)
Partikulárně vázané znečišťující látky představují vzhledem ke své schopnosti akumulace, perzistence a ekotoxikologickým účinkům vysoké riziko pro životní prostředí. Pro účelovou charakterizaci chemického stavu systémů vodních toků s jejich údolními nivami a maršemi, ale i s oblastí brackých, pobřežních a mořských vod je proto zapotřebí mít na zřeteli pevnou matrici – zejména s ohledem na komplexní hodnocení situace znečišťujících látek. Pokud se posuzuje pouze vodná fáze, zůstává podíl látek, který se nachází v partikulární fázi, nezohledněn. Pro komplexní hodnocení kvality vodních toků a pro dosažení jejich dobrého stavu je proto nezbytné, aby byly vedle norem kvality pro vodnou fázi zavedeny také cíle kvality pro sedimenty a plaveniny. To by mělo být provedeno na úrovni povodí na základě složení znečišťujících látek typického pro dané povodí. Skutečná míra rizika se stanovuje podle výše zatížení (koncentrace znečišťujících látek), dostupnosti znečišťujících látek a podle cíli činu ověřovacího systému ochrany. Stávající předpisy o maximálně tolerovaných koncentracích znečišťujících látek jsou vyhovující vždy z perspektivy sledovaného cíle ochrany. Proto mohou pro jednu a tutéž znečišťující látku existovat různě přísné požadavky.

Předměty ochrany

Pro výslovnou charakterizaci stavu kvality vodního toku je zapotřebí do značné míry zohlednit rizika vyhazující z partikulárně vázaných znečišťujících látek. Výběr 29 znečišťujících látek relevantních pro Labe (tabulka T-A2-3-1a) byl proveden v souladu s přístupem prvního plánu povodí (MKOL 2009), který zohledňuje dobrý stav vodních společenstev a na nich závislých suchozemských ekosystémů, lidské zdraví a trvale udržitelné nakládání se sedimenty. Podrobně posuzovány byly níže uvedené předměty ochrany:

a. chemický a ekologický stav vod
b. integrita vodních společenstev v mořských a pobřežních vodách
c. integrita vodních společenstev ve sladkých vodách
d. ochrana půd (údolní niva / marše)
e. lidské zdraví

Tab. T-A2-3-1a: Relevantní znečišťující látky pro nakládání se sedimenty v povodí Labe

<table>
<thead>
<tr>
<th>Č.</th>
<th>Látka</th>
<th>Jednotka</th>
<th>OGewV*</th>
<th>23/2011 Sb.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rut (Hg)</td>
<td>mg/kg</td>
<td></td>
<td>část B, tab. 2</td>
</tr>
<tr>
<td>2</td>
<td>Kadmium (Cd)</td>
<td>mg/kg</td>
<td></td>
<td>část B, tab. 2</td>
</tr>
<tr>
<td>3</td>
<td>Olovo (Pb)</td>
<td>mg/kg</td>
<td></td>
<td>část B, tab. 2</td>
</tr>
<tr>
<td>4</td>
<td>Zinek (Zn)</td>
<td>mg/kg</td>
<td>příloha 5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Měd (Cu)</td>
<td>mg/kg</td>
<td>příloha 5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Níkli (Ni)</td>
<td>mg/kg</td>
<td></td>
<td>část B, tab. 2</td>
</tr>
<tr>
<td>7</td>
<td>Arsen (As)</td>
<td>mg/kg</td>
<td>příloha 5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Chrom (Cr)</td>
<td>mg/kg</td>
<td>příloha 5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>α-hexachlorcyclohexan (α-HCH)</td>
<td>μg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>β-hexachlorcyclohexan (β-HCH)</td>
<td>μg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>γ-hexachlorcyclohexan (γ-HCH)</td>
<td>μg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>p.p’-DDT</td>
<td>μg/kg</td>
<td></td>
<td>část B, tab. 2</td>
</tr>
<tr>
<td>13</td>
<td>p.p’-DDE</td>
<td>μg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>p.p’-DDD</td>
<td>μg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PCB-28</td>
<td>μg/kg</td>
<td>příloha 5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>PCB-52</td>
<td>μg/kg</td>
<td>příloha 5</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>PCB-101</td>
<td>μg/kg</td>
<td>příloha 5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>PCB-118</td>
<td>μg/kg</td>
<td>příloha 5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>PCB-138</td>
<td>μg/kg</td>
<td>příloha 5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>PCB-153</td>
<td>μg/kg</td>
<td>příloha 5</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>PCB-180</td>
<td>μg/kg</td>
<td>příloha 5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Pentachlorbenzen (PeCB)</td>
<td>μg/kg</td>
<td>část B, tab. 2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Hexachlorbenzen (HCB)</td>
<td>μg/kg</td>
<td>část B, tab. 2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Benzo(a)pyren (BaP)</td>
<td>μg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Anthracen</td>
<td>μg/kg</td>
<td>část B, tab. 2</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Fluoranthen</td>
<td>μg/kg</td>
<td>část B, tab. 2</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Σ 5 PAU</td>
<td>μg/kg</td>
<td>část B, tab. 2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Kation tributylcinu (TBT)</td>
<td>μg/kg</td>
<td>část B, tab. 2</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Dioxyin / furany</td>
<td>ng TEG/kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Vyhláška o ochraně povrchových vod (OGewV) ze dne 20. července 2011 (Společná smlouva zákonů – BGBI. I. str. 1429): Příloha 5 k § 2 článu 6, § 5 odstavec 4 výše 2 a 3, § 9 odstavec 2 výše 1
** Nařízení vlády ze dne 22. prosince 2010, kterým se mění nařízení vlády č. 61/2003 Sb., o ukazatelech a hodnotách přípustného znečištění povrchových vod a odpadních vod, náležitostech povolení k vypouštění odpadních vod do vod povrchových a do kanalizací a o citlivých oblastech, ve znění nařízení vlády č. 229/2007 Sb., tabulka část B, str. 255
Výběr látek
Aplikována byla dvoustupňová metoda, která se v prvním kroku opírá o zmapování všech potenciálně relevantních látek. Za tímto účelem byly vyhodnoceny národní legislativní předpisy (zákony, vyhlášky, operativní pokyny), česko-německé dohody (MKOL) a mezinárodní úmluvy (OSPAR) se zřetelem na takové látky, u kterých závisí dodržování norem kvality přímo či nepřímo na kvalitě sedimentů. Tyto látky jsou persistenzní, toxické, biologicky akumulativní a adsorptivní. Kvantitativním kritériem je vysoký rozdělovací koeficient „pevná matrice / voda“ (log Kₚₐₚ > 3,5).

Klasifikace
Při zohlednění předmětů ochrany a úrovní právních předpisů byla zpracována obecná pravidla pro odvození klasifikačního postupu. Do přehledu bylo zahrnuto (viz tab. T-A2-3-1b):
1. platný stav regulativních ustanovení: normy environmentální kvality podle Rámcové směrnice o vodách a jejich implementace do národní legislativy v České republice (nařízení vlády č. 23/2011 Sb.) a v Německu (OGewV 2011), cíle dohodnuté na mezinárodní úrovni k ochraně severovýchodního Atlantiku (OSPAR) a v jejich důsledku Společná přechodná ustanovení pro nakládání s odtěženými nánosy v pobřežních vodách (GÜBAK 2009), preventivní hodnoty pro zabezpečení a obnovu funkčnosti půdy (BBoSchV) a normy na ochranu lidského zdraví (normy EU o nežádoucích látkách v krmivech a o zatížení konzumných ryb)
2. stav vědecké diskuse na téma „Standardy kvality pro sedimenty“, cílové záměry pro sedimenty podle stavu vědomostí (de Deckere et al. 2011, MacDonald et al. 2000)
3. rozsáhlá statistická vyhodnocení dostupných dat k zatížení sedimentů Labe znečišťujícími látkami.

<table>
<thead>
<tr>
<th>Č.</th>
<th>Látka</th>
<th>Jednotka</th>
<th>Formálně nejvýznamnější požadavek</th>
<th>Formální požadavek</th>
<th>Předmět ochrany / úroveň</th>
<th>Úroveň právních předpisů</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mezinárodní</td>
</tr>
<tr>
<td>1</td>
<td>Hg</td>
<td>mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,47 a.</td>
<td></td>
<td></td>
<td>23/2011 Sb. 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,15 b. OSPAR2010 EPR²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,23 c. de Deckere (C1)³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1-1,0 d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,5 e. norma EU o nežádoucích látkách v krmivech⁶</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cd</td>
<td>mg/kg</td>
<td>2,3 a.</td>
<td></td>
<td></td>
<td>23/2011 Sb. 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2 b. OSPAR2010 EPR²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,93 c. de Deckere (C1)³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,4-1,5 d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,22 e. norma EU o zatížení ryb určených konzumací⁷ (odvozená hodnota dle Heise et al. 2008¹⁵)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pb</td>
<td>mg/kg</td>
<td>53 a.</td>
<td></td>
<td></td>
<td>23/2011 Sb. 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47 b. OSPAR2010 EPR²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 c. de Deckere (C1)³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40-100 d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 e. norma EU o zatížení ryb určených konzumací⁷ (odvozená hodnota dle Heise et al. 2008¹⁵)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Č.</td>
<td>Látka</td>
<td>Jednotka</td>
<td>Formálně nejpríslušnější požadavek</td>
<td>Formální požadavek</td>
<td>Předmět ochrany / úroveň</td>
<td>Úroveň právních předpisů</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>Zn</td>
<td>mg/kg</td>
<td>800</td>
<td>a.</td>
<td>OGeW V</td>
<td>GÜBAK (R1)°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>b.</td>
<td>GÜBAK (R1)°</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>146</td>
<td>c. de Deckere (C1)²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>d.</td>
<td>BBodSchV [preventivní] hodnota příprav. sítí, čl. št. hlína</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>e.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cu</td>
<td>mg/kg</td>
<td>160</td>
<td>a.</td>
<td>OGeW V</td>
<td>GÜBAK (R1)°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>b.</td>
<td>GÜBAK (R1)°</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>c. de Deckere (C1)²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40-60</td>
<td>d.</td>
<td>BBodSchV [preventivní] hodnota příprav. sítí, čl. št. hlína</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40-60</td>
<td>e.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ni</td>
<td>mg/kg</td>
<td>3</td>
<td>a.</td>
<td>23/2011 Sb.¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>b.</td>
<td>GÜBAK (R1)°</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>c. de Deckere (C1)²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15-70</td>
<td>d.</td>
<td>BBodSchV [preventivní] hodnota příprav. sítí, čl. št. hlína</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15-70</td>
<td>e.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>As</td>
<td>mg/kg</td>
<td>40</td>
<td>a.</td>
<td>OGeW V</td>
<td>GÜBAK (R1)°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>b.</td>
<td>GÜBAK (R1)°</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7,9</td>
<td>c. de Deckere (C1)²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>e. norma EU o nežádoucích látkách v krmivech² (odvozená hodnota dle Heise et al. 2008¹³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cr</td>
<td>mg/kg</td>
<td>640</td>
<td>a.</td>
<td>OGeW V</td>
<td>GÜBAK (R1)°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>b.</td>
<td>GÜBAK (R1)°</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>c. de Deckere (C1)²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30-100</td>
<td>d.</td>
<td>BBodSchV [preventivní] hodnota příprav. sítí, čl. št. hlína</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30-100</td>
<td>e.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>α-HCH</td>
<td>µg/kg</td>
<td>0,5</td>
<td>a.</td>
<td>OGeW V</td>
<td>GÜBAK (R1)°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,5</td>
<td>b.</td>
<td>GÜBAK (R1)°</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,5</td>
<td>c.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>e. norma EU o nežádoucích látkách v krmivech² (odvozená hodnota dle Heise et al. 2008¹³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>g.</td>
<td>RHmV V</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>β-HCH</td>
<td>µg/kg</td>
<td>5</td>
<td>a.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>b.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>c.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>e. norma EU o nežádoucích látkách v krmivech² (odvozená hodnota dle Heise et al. 2008¹³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>γ-HCH</td>
<td>µg/kg</td>
<td>10</td>
<td>a.</td>
<td>23/2011 Sb.¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,5</td>
<td>b.</td>
<td>GÜBAK (R1)°</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,5</td>
<td>c.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,5</td>
<td>d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td>e. norma EU o nežádoucích látkách v krmivech² (odvozená hodnota dle Heise et al. 2008¹³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td>f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>g.</td>
<td>RHmV V</td>
<td></td>
</tr>
<tr>
<td>Č.</td>
<td>Látka</td>
<td>Jednotka</td>
<td>Formální nejpríněsší požadavek</td>
<td>Formální požadavek</td>
<td>Předmět ochrany / úroveň</td>
<td>Úroveň právních předpisů</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>12</td>
<td>p,p'-DDT</td>
<td>µg/kg</td>
<td>1</td>
<td>1</td>
<td>b.</td>
<td>GÜBAK (R1)³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,16 (suma DDT)</td>
<td></td>
<td>c. MacDonald³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>p,p'-DDE</td>
<td>µg/kg</td>
<td>1</td>
<td>1</td>
<td>b.</td>
<td>GÜBAK (R1)³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,31</td>
<td>0,31</td>
<td>c. de Deckere (C1)³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>p,p'-DDD</td>
<td>µg/kg</td>
<td>2</td>
<td>0,06</td>
<td>b.</td>
<td>GÜBAK (R1)³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c. de Deckere (C1)³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PCB-28</td>
<td>µg/kg</td>
<td>20</td>
<td>a.</td>
<td></td>
<td>OGewV³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,7</td>
<td>b.</td>
<td>OSPAR2010 EAC³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,04</td>
<td>0,04</td>
<td>c. de Deckere (C1)³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>PCB-52</td>
<td>µg/kg</td>
<td>20</td>
<td>a.</td>
<td></td>
<td>OGewV³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,7</td>
<td>b.</td>
<td>OSPAR2010 EAC³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1</td>
<td>0,1</td>
<td>c. de Deckere (C1)³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>PCB-101</td>
<td>µg/kg</td>
<td>20</td>
<td>a.</td>
<td></td>
<td>OGewV³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,0</td>
<td>b.</td>
<td>OSPAR2010 EAC³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,54</td>
<td>0,54</td>
<td>c. de Deckere (C1)³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>PCB-118</td>
<td>µg/kg</td>
<td>20</td>
<td>a.</td>
<td></td>
<td>OGewV³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,6</td>
<td>b.</td>
<td>OSPAR2010 EAC³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,43</td>
<td>0,43</td>
<td>c. de Deckere (C1)³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>PCB-138</td>
<td>µg/kg</td>
<td>20</td>
<td>a.</td>
<td></td>
<td>OGewV³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7,9</td>
<td>b.</td>
<td>OSPAR2010 EAC³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>c. de Deckere (C1)³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>PCB-153</td>
<td>µg/kg</td>
<td>20</td>
<td>a.</td>
<td></td>
<td>OGewV³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>b.</td>
<td>OSPAR2010 EAC³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,5</td>
<td>1,5</td>
<td>c. de Deckere (C1)³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>PCB-180</td>
<td>µg/kg</td>
<td>20</td>
<td>a.</td>
<td></td>
<td>OGewV³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>b.</td>
<td>OSPAR2010 EAC³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,44</td>
<td>0,44</td>
<td>c. de Deckere (C1)³</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>e.</td>
</tr>
</tbody>
</table>

přehled národních a mezinárodních právních podkladů pro znečišťující látky relevantní pro Labe (pokračování)
<table>
<thead>
<tr>
<th>Č.</th>
<th>Látka</th>
<th>Jednotka</th>
<th>Formálně nejprůznější požadavek</th>
<th>Formální požadavek</th>
<th>Předmět ochrany / úroveň</th>
<th>Úroveň právních předpisů</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>PeCB</td>
<td>µg/kg</td>
<td>400</td>
<td>a.</td>
<td>23/2011 Sb.¹</td>
<td>Mezinárodní: GUBAK (R1)³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>b.</td>
<td></td>
<td>ČR:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>HCB</td>
<td>µg/kg</td>
<td>17</td>
<td>a.</td>
<td>23/2011 Sb.¹</td>
<td>Mezinárodní: GUBAK (R1)³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,8</td>
<td>b.</td>
<td>GUBAK (R1)³</td>
<td>ČR:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0004</td>
<td>c.</td>
<td>de Deckere (C1)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>e.</td>
<td>norma EU o nežádoucích látkách v krmivech (odvozená hodnota dle Heise et al. 2008)¹⁰</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12,5</td>
<td></td>
<td>RHeV³</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Benzo(a)pyren (BaP)</td>
<td>mg/kg</td>
<td></td>
<td>a.</td>
<td></td>
<td>Mezinárodní: OSPAR2010.ERL²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,43</td>
<td>b.</td>
<td>OSPAR2010.EAC²</td>
<td>ČR:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,14</td>
<td>c.</td>
<td>de Deckere (C1)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,01</td>
<td>e.</td>
<td>norma EU o zajištění ryb určených ke konzumaci (odvozená hodnota dle Heise et al. 2008)¹⁰</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Anthracen</td>
<td>mg/kg</td>
<td>0,31</td>
<td>a.</td>
<td>23/2011 Sb.¹</td>
<td>Mezinárodní: OSPAR2010.EAC²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,78</td>
<td>b.</td>
<td>OSPAR2010.EAC²</td>
<td>ČR:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,03</td>
<td>c.</td>
<td>de Deckere (C1)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Fluoranthren</td>
<td>mg/kg</td>
<td>0,18</td>
<td>a.</td>
<td>23/2011 Sb.¹</td>
<td>Mezinárodní: OSPAR2010.EAC²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,25</td>
<td>b.</td>
<td>OSPAR2010.EAC²</td>
<td>ČR:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,25</td>
<td>c.</td>
<td>de Deckere (C1)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Σ 5 PAU</td>
<td>mg/kg</td>
<td>2,5</td>
<td>a.</td>
<td>23/2011 Sb.¹</td>
<td>Mezinárodní: GUBAK (R1)³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,6</td>
<td>b.</td>
<td>GUBAK (R1)³</td>
<td>ČR:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,62</td>
<td>c.</td>
<td>de Deckere (C1)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>TBT</td>
<td>µg/kg</td>
<td>0,02</td>
<td>a.</td>
<td>23/2011 Sb.¹</td>
<td>Mezinárodní: GUBAK (R1)³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>b.</td>
<td>GUBAK (R1)³</td>
<td>ČR:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Dioxiny / furany</td>
<td>mg/TEQ/kg</td>
<td></td>
<td>a.</td>
<td></td>
<td>Mezinárodní:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b.</td>
<td></td>
<td>ČR:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>d.</td>
<td>Safe sediment value¹⁶</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>e.</td>
<td>2. zpráva pracovní skupiny zástupců spolkových a zemských orgánů „Dioxiny“ (1993)¹¹</td>
<td></td>
</tr>
</tbody>
</table>

Právní, resp. odborné podklady ke stanovení prahových hodnot

1 Nařízení vlády ze dne 22. prosince 2010, kterým se mění nařízení vlády č. 61/2003 Sb., o ukazatelích a hodnotách přípustného znečištění povrchových vod a odpadních vod, náležídlostech povolení k vypouštění odpadních vod do vod povrchových a do kanalizací a o cílův oblastech, ve znění nařízení vlády č. 229/2007 Sb.

Vytvořeny byly tři týdny (viz Tab. T-A2.3-2):

- nedosažení dolní prahové hodnoty (zelená),
- rozměr mezi dolní a horní prahovou hodnotou (žlutá),
- překročení horní prahové hodnoty (červená).

Horní prahová hodnota je v zásadě definována prostřednictvím norem environmentální kvality (NEK) pro znečišťující látky v sedimentech v rámci transpozice požadavků Rámové směrnice o vodách do národní legislativy (nařízení vlády č. 23/2011 Sb. – část B tab. 2, resp. spolková vyhláška OGeVV 2011 – příloha 5). Oba tyto národní předpisy jsou v kontextu koncepce pro nakládání se sedimenty považovány obsahově za rovnocenné. Pokud je o vymezení převážně partikulárně vázané anorganické a organické znečišťující látky relevantní pro Labe, pak se oba tyto předpisy do značné míry doplňují, ale ani v jejich souhrnu, tj. v německé vyhlášce o povrchových vodách (OGeVV) a v českém nařízení vlády č. 23/2011
Tab. T-A2-3-2: Relevantní znečišťující látky a prahové hodnoty ke klasifikaci sedimentů v povodí Labe

<table>
<thead>
<tr>
<th>Č.</th>
<th>Látka</th>
<th>Jednotka</th>
<th>Dolní prahová hodnota DPH</th>
<th>Horní prahová hodnota HPH</th>
<th>Zdroj HPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rtuľ (Hg)*</td>
<td>mg/kg</td>
<td>0,15</td>
<td>0,15 – 0,47</td>
<td>0,47</td>
</tr>
<tr>
<td>2</td>
<td>Kadmium (Cd)*</td>
<td>mg/kg</td>
<td>0,22</td>
<td>0,22 – 2,3</td>
<td>2,3</td>
</tr>
<tr>
<td>4</td>
<td>Zinek (Zn)</td>
<td>mg/kg</td>
<td>200</td>
<td>200 – 800</td>
<td>800</td>
</tr>
<tr>
<td>5</td>
<td>Měď (Cu)</td>
<td>mg/kg</td>
<td>14</td>
<td>14 – 160</td>
<td>160</td>
</tr>
<tr>
<td>6</td>
<td>Nikl (Ni)</td>
<td>mg/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Arsen (As)*</td>
<td>mg/kg</td>
<td>7,9</td>
<td>7,9 – 40</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>Chrom (Cr)</td>
<td>mg/kg</td>
<td>26</td>
<td>26 – 640</td>
<td>640</td>
</tr>
<tr>
<td>9</td>
<td>α-hexachlorcyclohexan* (α-HCH)</td>
<td>μg/kg</td>
<td>0,5</td>
<td>0,5 – 1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>10</td>
<td>β-hexachlorcyclohexan** (β-HCH)</td>
<td>μg/kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>γ-hexachlorcyclohexan* (γ-HCH)</td>
<td>μg/kg</td>
<td>0,5</td>
<td>0,5 – 1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>12</td>
<td>p,p’-DDT</td>
<td>μg/kg</td>
<td>1</td>
<td>1 – 3</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>p,p’-DDE</td>
<td>μg/kg</td>
<td>0,31</td>
<td>0,31 – 6,8</td>
<td>6,8</td>
</tr>
<tr>
<td>14</td>
<td>p,p’-DDD</td>
<td>μg/kg</td>
<td>0,06</td>
<td>0,06 – 3,2</td>
<td>3,2</td>
</tr>
<tr>
<td>15</td>
<td>PCB-28</td>
<td>μg/kg</td>
<td>0,04</td>
<td>0,04 – 20</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>PCB-52</td>
<td>μg/kg</td>
<td>0,1</td>
<td>0,1 – 20</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>PCB-101</td>
<td>μg/kg</td>
<td>0,54</td>
<td>0,54 – 20</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>PCB-118</td>
<td>μg/kg</td>
<td>0,43</td>
<td>0,43 – 20</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>PCB-138</td>
<td>μg/kg</td>
<td>1</td>
<td>1 – 20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>PCB-153</td>
<td>μg/kg</td>
<td>1,5</td>
<td>1,5 – 20</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>PCB-180</td>
<td>μg/kg</td>
<td>0,44</td>
<td>0,44 – 20</td>
<td>20</td>
</tr>
<tr>
<td>22</td>
<td>Pentachlorbenzen* (PeCB)</td>
<td>μg/kg</td>
<td>1</td>
<td>1 – 400</td>
<td>400</td>
</tr>
<tr>
<td>23</td>
<td>Hexachlorbenzen* (HCB)</td>
<td>μg/kg</td>
<td>0,0004</td>
<td>0,0004 – 17</td>
<td>17</td>
</tr>
<tr>
<td>24</td>
<td>Benzo(a)pyren* (BaP)</td>
<td>μg/kg</td>
<td>0,01</td>
<td>0,01 – 0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>25</td>
<td>Anthracen*</td>
<td>μg/kg</td>
<td>0,03</td>
<td>0,03 – 0,31</td>
<td>0,31</td>
</tr>
<tr>
<td>26</td>
<td>Fluorantren1</td>
<td>μg/kg</td>
<td>-</td>
<td>-</td>
<td>0,18</td>
</tr>
<tr>
<td>27</td>
<td>Σ 5 PAH*</td>
<td>mg/kg</td>
<td>0,6</td>
<td>0,6 – 2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>28</td>
<td>Kation tributylcinu1* (TBT)</td>
<td>μg/kg</td>
<td>-</td>
<td>-</td>
<td>0,02</td>
</tr>
<tr>
<td>29</td>
<td>Dioxiny / furany*</td>
<td>ng TEE/kg</td>
<td>5</td>
<td>5 – 20</td>
<td>20</td>
</tr>
</tbody>
</table>

1 HPH je zároveň formálně nejprsnějším požadavkem, klasifikaci zde nelze provést
* Látka úrovně právních předpisů, týkajících se předmětu ochrany „Jednotné zdroje“ (příloha A2-3; tab. T-A2-3-1b) a i nebo prioritní nebezpečná látka (ES 2008b)

Sb. z 22. prosince 2010, nejsou všechen znečišťující látky relevantní pro Labe ošetřeny. Pro znečišťující látky, pro které nejsou stanoveny NEK, platí v tomto odstupňování níže uvedená kritéria:

- U „horní prahové hodnoty“ pro znečišťující látky, pro které v současné době neexistují žádné legislativní přímo závazné ustanovení, je používána hodnota Consensus 2 – „Probable Effect Level“ (concentrations above this level will certainly result in toxic effects) dle de Deckereho et al. (2011). Zde se jedná o odvozenou hodnotu z ekotoxikologického hlediska pro ochranu vodních společenstev.

- Pro dioxiny a furany byla použita hodnota „safe sediment value“.

Aplikace klasifikačního postupu a vypovídácí hodnota

Klasifikace plavení a sedimentů představuje jen jeden z prvů hodnocení stavu a tedy i analyzy rizik, a proto mezi ně nelze klást rovník. Z překročení horní prahové hodnoty vyplývá požadavek zpracování analýzy rizik ve zdroje podle přílohy A2-6. Tato klasifikace platí v rámci národní a mezinárodní koncepce pro nakládání se sedimenty v povodí Labe a slouží jejím cílům. Aplikuje se na referenčních profilách Labe a jeho relevantních přítocích. Zařazení jakosti sedimentů na referenčním profilu se bude provádět pomocí jednotlivých ročních průměrů. Klasifikace vytváří přehled o zatížení znečišťujícími látkami a umožňuje logickou vysledovatelnost prostorových a časových změn
Obr. B-A2-3-1: Obsah kadmia v podélém profilu Labe (klasifikace podle Koncepce MKOL pro nakládání se sedimenty)
Klasifikace se provádí na základě dostupných normativních požadavků. Při jejich odvozování v souvislosti s frakcí sedimentů, na kterou se příslušná norma vztahuje, se nepostupovalo jednotně. Nejistota, která z toho vyplývá, je však přijatelná, jelikož klasifikací přístup je uplatňován na jmenším sedimenty. **Tabulka T-A2-3-3** obsahuje 29 zneščišťujících látek, které jsou relevantní pro management sedimentů v povodí Labe. Těmto látkám jsou přiřazeny příslušné horní a dolní prahové hodnoty podle Koncepce MKOL pro nakládání se sedimenty. Tabulka obsahuje také výčet platné úrovne právních předpisů, které definovaly příslušnou dolní a horní prahovou hodnotu. Ve sloupce „Těžké kovy“ a „Organické látky“ jsou obsaženy normativní hodnoty zrnitosti ve frakcích < 2 mm, < 20 µm a < 63 µm z lěhoto jmenovitě uvedených právních předpisů.

Formálně nejpřísnější požadavek

Tab. T-A2-3-3: Zrnitostní frakce normativních požadavků pro relevantní znečišťující látky v Labi

<table>
<thead>
<tr>
<th>Č.</th>
<th>Látka</th>
<th>Jednotka</th>
<th>Horní prahová hodnota</th>
<th>Úroveň právních předpisů</th>
<th>Těžké kovy</th>
<th>Organické látky</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rtu (Hg)</td>
<td>mg/kg</td>
<td>0,47</td>
<td>23/2011 Sb.</td>
<td><20 µm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kadmium(Cd)</td>
<td>mg/kg</td>
<td>2,3</td>
<td>23/2011 Sb.</td>
<td><20 µm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Olovo (Pb)</td>
<td>mg/kg</td>
<td>53</td>
<td>23/2011 Sb.</td>
<td><20 µm</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Zinek (Zn)</td>
<td>mg/kg</td>
<td>800</td>
<td>OGeV</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Měď (Cu)</td>
<td>mg/kg</td>
<td>160</td>
<td>OGeV</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Nikli (Ni)</td>
<td>mg/kg</td>
<td>3</td>
<td>23/2011 Sb.</td>
<td><20 µm</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Arsen (As)</td>
<td>mg/kg</td>
<td>40</td>
<td>OGeV</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Chrom (Cr)</td>
<td>mg/kg</td>
<td>640</td>
<td>OGeV</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>α-hexachlorcyclohexan (α-HCH)</td>
<td>µg/kg</td>
<td>1,5</td>
<td>GUBAK</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>β-hexachlorcyclohexan (β-HCH)</td>
<td>µg/kg</td>
<td>5</td>
<td>RhmV</td>
<td><2 mm*</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>γ-hexachlorcyclohexan (γ-HCH)</td>
<td>µg/kg</td>
<td>1,5</td>
<td>GUBAK</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>p.p’-DDT</td>
<td>µg/kg</td>
<td>3</td>
<td>GUBAK</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>p.p’-DDE</td>
<td>µg/kg</td>
<td>6,8</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>p.p’-DDD</td>
<td>µg/kg</td>
<td>3,2</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PCB-28</td>
<td>µg/kg</td>
<td>20</td>
<td>OGeV</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>PCB-52</td>
<td>µg/kg</td>
<td>20</td>
<td>OGeV</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>PCB-101</td>
<td>µg/kg</td>
<td>20</td>
<td>OGeV</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>PCB-118</td>
<td>µg/kg</td>
<td>20</td>
<td>OGeV</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>PCB-138</td>
<td>µg/kg</td>
<td>20</td>
<td>OGeV</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>PCB-153</td>
<td>µg/kg</td>
<td>20</td>
<td>OGeV</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>PCB-180</td>
<td>µg/kg</td>
<td>20</td>
<td>OGeV</td>
<td><63 µm</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Pentachlorphenzen (PeCB)</td>
<td>µg/kg</td>
<td>400</td>
<td>23/2011 Sb.</td>
<td><2 mm</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Hexachlorbenzen (HCB)</td>
<td>µg/kg</td>
<td>17</td>
<td>23/2011 Sb.</td>
<td><2 mm</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Benzo(a)pyren (BaP)</td>
<td>µg/kg</td>
<td>0,6</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Anthracen</td>
<td>µg/kg</td>
<td>0,31</td>
<td>23/2011 Sb.</td>
<td><2 mm</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Fluoranthren</td>
<td>mg/kg</td>
<td>0,16</td>
<td>23/2011 Sb.</td>
<td><2 mm</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Σ 5 PAU</td>
<td>mg/kg</td>
<td>2,5</td>
<td>23/2011 Sb.</td>
<td><2 mm</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Kation tributylicnou (TBT)</td>
<td>µg/kg</td>
<td>0,02</td>
<td>23/2011 Sb.</td>
<td><2 mm</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Dioxinou / furany*</td>
<td>ng TEO/kg</td>
<td>20</td>
<td>Safe Sed Value</td>
<td><2 mm</td>
<td></td>
</tr>
</tbody>
</table>

* odvozeno dle Heise et al. (2008)
** nedefinováno** = hodnoty EAC dle úmluvy OSPAR se zaměřují na bahnité sedimenty, záměrně však nemají žádné definované normování (někdy je zmíňováno normování TOC a také regresivní metody, které však uživateli nemůže a neměl by bez dalšího provádět).

Tab. T-A2-3-3: Zrnitostní frakce normativních požadavků pro relevantní znečišťující látky v Labi
Tab. T-A2-3: Zmínitelní frakce normativních požadavků pro relevantní znečišťující látky v Labi (pokračování)

<table>
<thead>
<tr>
<th>Č.</th>
<th>Látka</th>
<th>Jednotka</th>
<th>Dolní prahová hodnota</th>
<th>Úroveň právních předpisů</th>
<th>Těžké kovy</th>
<th>Organické látky</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rtu (Hg)</td>
<td>mg/kg</td>
<td>0,15</td>
<td>O Spar EAC</td>
<td>nedefinováno ***</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kadmium (Cd)</td>
<td>mg/kg</td>
<td>0,22</td>
<td>norma EU o rybách</td>
<td><2 mm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Olovo (Pb)</td>
<td>mg/kg</td>
<td>25</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Zinek (Zn)</td>
<td>mg/kg</td>
<td>200</td>
<td>BBodSchV</td>
<td>celkem n zmínitost****</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Měd (Cu)</td>
<td>mg/kg</td>
<td>14</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Níl (Ni)</td>
<td>mg/kg</td>
<td>-</td>
<td>23/2011 Sb.</td>
<td><20 μm</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Arsen (As)</td>
<td>mg/kg</td>
<td>7,9</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Chrom (Cr)</td>
<td>mg/kg</td>
<td>26</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>α-hexachloryclohexan (α-HCH)</td>
<td>μg/kg</td>
<td>0,5</td>
<td>GUBAK</td>
<td><63 μm</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>β-hexachloryclohexan (β-HCH)</td>
<td>μg/kg</td>
<td>-</td>
<td>RmV</td>
<td><2 mm*</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>γ-hexachloryclohexan (γ-HCH)</td>
<td>μg/kg</td>
<td>0,5</td>
<td>GUBAK</td>
<td><63 μm</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>p.p'-DDT</td>
<td>μg/kg</td>
<td>0,31</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>p.p'-DDE</td>
<td>μg/kg</td>
<td>0,06</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>p,p'-DDD</td>
<td>μg/kg</td>
<td>0,04</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PCB-28</td>
<td>μg/kg</td>
<td>0,1</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>PCB-52</td>
<td>μg/kg</td>
<td>0,54</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>PCB-101</td>
<td>μg/kg</td>
<td>0,43</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>PCB-118</td>
<td>μg/kg</td>
<td>1</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>PCB-138</td>
<td>μg/kg</td>
<td>1,5</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>PCB-153</td>
<td>μg/kg</td>
<td>0,44</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Pentachlorbenzen (PeCB)</td>
<td>μg/kg</td>
<td>1</td>
<td>GUBAK</td>
<td><63 μm</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Hexachlorbenzen (HCB)</td>
<td>μg/kg</td>
<td>0,0004</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Benzo(a)pyren (BaP)</td>
<td>mg/kg</td>
<td>0,01</td>
<td>norma EU o rybách</td>
<td><2 mm</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Anthracen</td>
<td>mg/kg</td>
<td>0,03</td>
<td>de Deckere</td>
<td><2 mm**</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Fluoranthen</td>
<td>mg/kg</td>
<td>-</td>
<td>23/2011 Sb.</td>
<td><2 mm</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Σ 5 PAU</td>
<td>mg/kg</td>
<td>0,6</td>
<td>GUBAK</td>
<td><63 μm</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Kaliont tributylinu (TBT)</td>
<td>μg/kg</td>
<td>-</td>
<td>23/2011 Sb.</td>
<td><2 mm</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Dioxiny / furany</td>
<td>ng TEQ/kg</td>
<td>5</td>
<td>Z. zpráva pracovní skupiny zástupců spolkových a zemských orgánů „Dioxiny“ 1993</td>
<td><2 mm</td>
<td></td>
</tr>
</tbody>
</table>

* odvozno dle Heise et al. (2008)

** celkem*** (normované hodnoty nebyly zmíněny v materiálu, metodech ani v tabulkách de Deckereho et al. (2011))

*** nedefinováno**** = hodnoty EAC dle úmluvy OSpar se zaměřují na bahnitá sedimenty, záměrně však nemají žádně definováno normování (někdy je zmíněno normování TOC a také regenerativní metody, které však uživatel nemůže a neměl by bez dalšího provádět)

**** celkem n zmínitost*** vedlejší obsah, ve třech třídách, rozdělené podle zmínitosti

A2-4 ANALYZA HYDROMORFOLOGICKYCH RIZIK NA VNITROZEMSKEM USEKU LABE V KONTEXTU KONCEPCE PRO NAKLADANI SE SEDIMENTY

Úvod

V mezinárodní oblasti povodí Labe se český a německý vnitrozemský úsek dělí na úsek regulovaný vzduším a volně tekoucí. Česká kilometráž pro Labe má počátek v ústí Labe do Severního moře (ř. km 0) a končí u pramene (ř. km 1095,3). V Německu použitá kilometráž probíhá v opačném směru od česko-německé hranice k ústí u Cuxhavenu (ř. km 0 až ř. km 727,7). Německý říční kilometr 0 odpovídá tak- to českému říčnímu kilometru 730,0. Na českém úseku toku Labe je 24 zdrojadel, které na sebe navazují až do Ústí nad Labem. Pod Ústím nad Labem začíná volně tekoucí vnitrozemský úsek Labe a pokračuje až k jezu Geesthacht, který je hranici vnitrozemského úseku Labe.

Zdokumentování a hodnocení režimu sedimentů jako součásti hydromorfológického stavu Labe a dolních úseků jeho relevantních přítoků za účelem charakte-rizace režimu sedimentů a hydromorfologie a pro od-vození doporučených postupů se provádí na základě níže uvedených indikátorových ukazatelů:

- variabilita šířky / variabilita hloubek,
- průchodoostnost pro sedimenty,
- zrnitostní složení dnového substrátu,
- průměrná změna nadmořské výšky dna – bilance sedimentů (SRN), resp. ovlivnění průtokového režimu (ČR)
- břehová struktura (SRN), resp. stabilita břehů (ČR)
- údolní niva (poměr recentní a morfológické údolní nivy).

Analýza hydromorfológických rizik

Pomocí „analýzy hydromorfológických rizik“ je dosaženo propojení mezi (a) cíli zdokumentování a hodnocení režimu sedimentů jako součásti hydromorfológického stavu a (b) odvozením doporučených postupů ke zlepšení hydromorfológického stavu. Na základě dosažených výsledků hodnocení se nejdříve posuzuje, zda je nutné odvodit doporučené postupy. Výsledek odstupňovaného hodnocení v jedné z pěti tříd ukazuje, zda je či není nutné uplatnit doporučené postupy.

Třída 1 a 2 znamená, že není třeba předkládat žádné návrhy na zlepšení hydromorfológického stavu v toku Labe nebo v relevantních přítocích, jelikož převládají velmi dobré až dobré hydro-morfológické podmínky a odpovídají velmi dobrý až dobrý režim sedimentů. Není zde žádné riziko, že by cíle hydromorfológického a sedimentologického stavu v kontextu koncepce pro nakládání se sedimenty neměly být dosaženy. Třídy 3, 4 a 5 znamenají horší hydromorfológické poměry, a tudíž i horší režim sedimentů. Ke zlepšení hydromorfológického stavu v toku Labe nebo v relevantních přítocích musí být zpracovány doporučené postupy, aby se zamezilo riziku nesplnění cíle dosažení vyvaženého režimu sedimentů a zlepšených hydromorfológických poměrů.

Každý z těchto hydromorfológických indikátorových ukazatelů je hodnocen pomocí pětistupňového klasifikačního systému a promítá se do analýzy hydromorfológických rizik v kontextu koncepce pro nakládání se sedimenty Labe pro aspekt hydromorfologie – vnitrozemský úsek, viz obr. B-A2-4-1.

Pětistupňová klasifikace od 1 „velmi dobry“ přes 2 „dobrý“, 3 „střední“, 4 „poškozený“ až po 5 „znížený“ příslušného hydromorfológického indikátorového ukazatele vychází ze stupňů hodnocení podle Rámcové směrnice o vodách (ES 2000a).

Obr. B-A2-4-1: Analýza rizik v kontextu koncepce pro nakládání se sedimenty Labe pro aspekt hydromorfologie – vnitrozemský úsek

Ukazatele variabilita šířky / variabilita hloubek, břehová struktura, resp. stabilita břehů a údolní niva se dělí vždy na dva jednotlivé ukazatele, které se rovněž jednotlivě promítají do odvození doporučených postupů. Toto rozdělení na dva ukazatele je u variability šířky / variability hloubek odvodněno významnosti jak variability šířky, tak i variability hloubek. Variabilita šířky jako reprezentativní ukazatel pro příčný profil / půdorys koryta vyjadřuje poměr mezi největší a nejmenší šířkou říčního koryta, a je tedy měřítkem rozsahu a četnosti prostorových změn šířky říčního koryta (LUÁ NRW 2001; LAWA 2000, 2002), a tím i nepřímo pestrosti nabídky stanovišť. Variabilita hloubek jako reprezentativní ukazatel pro podélný profil vodního toku popisuje četnost a rozsah prostorových změn hloubek vody v podélném profilu řeky. Variabilita hloubek je měřítkem rozsahu spektra biotopů a počtu mezohabitátů, jako jsou např. hlubiny a měříčny – „pool and riffle“ (LAWA 2000), a je tedy rovněž vhodným nepřímým indikátorovým ukazatelem pro rozoznam byl stanovišť a potenciálního druhového spektra (Quick et al. 2012). Z uvedených důvodů, zejména však z důvodu funkce indikátoru pro převládající sedimentační poměry, a tím i hydromorfologický charakter, vstupují výsledky obou těchto ukazatelů samostatně do dalšího hodnocení k rizikové analýze. U obou hydromorfologických indikátorových ukazatelů břehová struktura, resp. stabilita břehů a údolní niva se provádí další rozdělení na pravý a levý břeh vodního toku. Vzhledem k tomu, že oba indikátorové ukazatele – břeh i údolní niva – mohou být utvářeny zcela rozdílně, ba až protikladně, je nezbytné, aby byly břehy i údolní nivy po obou stranách znázorněny diferencováno. Proto se hodnocení těchto ukazatelů promítá do specifikace možných navrho- vaných postupů pro každý břeh řeky samostatně. Na českém vnitrozemském řece Labe probíhá hodno- cení pro pravý i levý břeh a údolní nivy také odděleně, pro výsledný hydromorfologický stav je určující vždy méně přiznivá hodnota (Langhammer 2013).

Pro odvození doporučených postupů mají klíčovou funkci indikátorové ukazatele průchodonost pro sedimenty a průměrná změna nadmořské výšky dna – bilance sedimentů (SRN), resp. ovlivnění hydrologického režimu (ČR) – viz také kap. 3.4 a 5.2. Chybějící průchodonost pro sedimenty a deficit sedimentů se negativně projevuje i u dalších hydromorfologických indikátorových ukazatelů. Průměrně změně nadmořské výšky dna – bilanci sedimentů se příkladá mimořádný význam mimo jiné kvůli relevanci přerušení vazby mezi říčním korytem a údolní nivou. Indikátor „ovlivnění hydrologického režimu“ ukazuje např. změněný charakter průtoků v důsledku antropogenních zásahů. Z tohoto důvodu by se oba tyto hlavní indikátorové ukazatele měly v prvním kroku promítout do odvození doporučených postupů, pokud hodnocení vykazuje třídy 3, 4 a 5 (proto také jejich tučné orámování na obr. B-A2-4-1). Ve druhém kroku pak následují ostatní hydromorfologické indikátorové ukazatele: U nich se při dalším postupu prověřuje, zda v kombinaci s oběma prvně jménovanými ukazateli prvního kroku dochází k synergickým účinkům při specifikaci a také případné pozdější realizaci možných opatření.
Jako příklad takového odvození doporučených postupů se synergickými účinky lze uvést kombinaci hydromorfologických indikátorových ukazatelů průměrná změna nadmořské výšky dna – bilance sedimentů a variabilita šířky. U aktuálního stavu se pro odvození variabilita šířky používá kapacitní průtok. Zde umožňují opatření ve smyslu rozšíření říčního koryta (např. pomocí rozšíření břehů, napojení nebo vytvoření záplavových koryt, napojení starých ramen) dosáhnout lepšího hodnocení dnešní variabilita šířky synergicky se zlepšením pro průměrnou změnu nadmořské výšky dna – bilancí sedimentů. Rozšíření koryta to by v tomto smyslu vedlo také ke sníženému rozrušování dna v důsledku proudění, a tím i ke snížené erozi dna a zároveň by došlo v důsledku napojených, rozšířených úseků ke zvýšenému přísnům sedimentů. Tento případný pozitivní účinek na bilanci sedimentů může sloužit jako příklad kombinovaného postupu při odvozování doporučených postupů (využití synergických účinků pomocí kroků I a II). Každý jednotlivý indikátorový ukazatel se pro odvození doporučených postupů posuzuje na základě kroků I a II. Hodnocení 5km úseků (viz níže) v Německu, resp. homogenních úseků v České republice se promítá do rozhodnutí, zda budou pro daný úsek navrhovány postupy řešení (od třídy 3). Pro konkretizaci doporučených postupů jsou na německém vnitrozemském úseku Labe kromě toho k dispozici podrobnější hodnocení úseků v rastro 1 km. Tento zde uvedený příklad navrhovaného postupu by se pak promít do hodnocení rizik z hlediska hydromorfologických a sedimentologických aspektů. Analýza hydromorfologických rizik představuje však pouze jeden prvek celkového hodnocení rizika v rámci plánování managementu sedimentů pro Labe a jeho příbytky. V následující vyšší rovině je třeba provést porovnání s „analýzou rizik znečišťujících látek“ a s „analýzou rizik plavby“ (viz obr. B-A2-4-1 a B-A2-4-2).

Součástí této metodiky jsou veškeré hydromorfologické ukazatele skupín složek kvality průchodnosti pro sedimenty a morfologie včetně nezbytného mapování a hodnocení jednotlivých ukazatelů pro kategorii „řeky“ relevantních pro vnitrozemskou část toku, tj. variabilita šířky a variabilita hloubek, struktura a složení dnového substrátu vodního toku, ale i struktura břehové zóny, průtok a dynamika průtoků, které jsou vyžadovány podle Rámcové směrnice o vodách (ES 2000a) a německé vyhlášky o povrchových vodách (OGewV 2011). Jako pomocné ukazatele byly v zájmu dosažení vyrovnávacího režimu sedimentů a zlepšení hydromorfologických poměrů doplněny oba významné hydromorfologické ukazatele k průměrné změně nadmořské výšky dna – bilanci sedimentů a k údolní nivě (viz obr. B-A2-4-1). Oba ukazatele mají přímou přímořskou vazbu na vodní režim, jelikož jsou výrazně ovlivňovány dynamikou průtoků a vodních stavů, ale i vazbou na útvary podzemních vod. Ukazatel průměrná změna nadmořské výšky dna – bilance sedimentů je mírou možných zazemňovacích / sedimentačních procesů, resp. procesů zahlobalování dna / erozie za definované období. Přítom jsou hodnoceny dlouhodobé a prostorově rozsáhlé změny dna toku za období od roku 1898 do roku 2004 a nikoliv lokální a dočasné změny výšky dna, k nimž dochází v rámci přirozené morfodynamiky. Sedimentační a erozní procesy se přímo vzájemně ovlivňují s průtoky (říjen, rychlost proudění apod.) ve vodním toku a mohou vést k problémům v lodní dopravě v souvislosti s hloubkou plavební dráhy (příčná vazba na příliv kvantita / plavba), škodám na stavební infrastrukturu v toku a podč. to, ale i k narušení ekologického stavu. Procesy zahlobalování dna toku se pojí se změnou výšky hladiny vodního toku a zpravidla i se změnou výšky hladiny podzemních vod. To vede dlouhodobě k narušení vazby mezi vodním tokem a údolním nivou spolu s úbytkem typických lužních stanovišť, druhů živočichů a rostlin. Morfologický proces zahlobalování je pro Střední Labe velmi významný. Ukazatel průměrná změna nadmořské výšky dna – bilance sedimentů tedy poskytuje rozhodující informace o režimu sedimentů s erozními a akumulačními úseky i popř. s již převládajícími vyrovnávacími poměry a re- flectuje vývoj režimu sedimentů za určité období opět ve smyslu vodního systému, který se vyznačuje defi- čitem, přebytem nebo rovnováhou sedimentů. Údolní niva, která vzhledem k povrchu recentní, tedy dnes ještě zaplavené nivy k morfologické nivě, tedy někdejší údolní nivě ležící za zimními protipovodňovými hráze- mi, s sebou přinašejí významné informace o akvaticko- terestrickém a terestrickém záplavovém území, funguje jako zároveň jako úložiště i jako zdroj sedimentů. Proto také poskytuje údolní niva jako jeden z vybraných hydromorfologických indikátorových ukazatelů v zájmu podpory a dosažení vyrovnávacího režimu sedimentů na Labi důležité informace o území, které může nebo mohlo mít vliv na režim sedimentů. Toto ovlivnění se může projevovat např. sedimentací v oblasti údolní nivy a / nebo naopak odnesením sedimentů z údolních niv do vodního toku. Úbytek rozlohy ploch údolních niv může eventuálně spolupodílet na chybějící přínos k režimu sedimentů, a tím přispívá k dalšímu deficitu sedimentů (viz např. BFN 2009; LHW 2012). Chybějící záplavové plochy mohou vedle toho vést k intenzivnějšímu narušování říčního dna. Na erozi a akumulací sedimentů v oblasti údolních niv má vliv také snížená četnost vybíhování z důvodu
Na českém vnitrozemském úseku Labe byl jako významný hydromorfologický indikátor identifikován ukazatel „ólebního hydrolodického režimu“ (bilance průtoků). Rohodujícím faktorem, který ovlivňuje hydrolodický režim i transport sedimentů, je kontinuita toku v podélném profilu. Vysoká četnost jezů na středním toku i značný dosah jejich vzdutí představuje jeden z klíčových faktorů, které ovlivňují přirozenou dynamiku fluviálních procesů a odrážejí se v nepříznivém hodnocení v jednotlivých mapovaných sekcích. Na středním toku českého Labe, kde na sebe jednotlivé jezvy navazují, je v mapovaných sekciích pouze malá část délky toku bezprostředně neovlivněna dosahem vysokých jezů. Druhým faktorem, který ovlivňuje výsledné hodnocení hydromorfologického stavu, je změna v usecích na středním toku českého Labe, jsou historické úpravy trasy toku, zejména historické napřímení toku a s ním související úpravy koryta (viz kap. 5.2).

Zdokumentování a hodnocení vybraných příkladů hydromorfologických indikátorových ukazatelů variabilita šířky / variabilita hloubek, průchodnost pro sedimenty, změnité složení dnového struktura, průměrná změna nadmořské výšky dna – bilance sedimentů, resp. ovlnění hydrologického režimu, břehová struktura, resp. stabilita břehů a údolní niva (poměr recentní a morfologické údolní nivy) se provdá vždy za využití nejlepších dostupných datových podkladů na německé straně a na české straně na základě terénního mapování s výjimkou ukazatele údolní niva (viz kap. 3.4 a 5.2). Zpracování pro německý vnitrozemský úsek Labe probíhal pomocí modulu Valmorph integrovaného modelu údolní nivy INFORM (Integrated Floodplain Response Model) Spolkového ústavu hydrologického (BfG), který umožňuje kvantitativní zdokumentování a vyhodnocení hydromorfologických ukazatelů (Quick 2011; Rosenzweig et al. 2012). Vyhodnocení se provádí na základě výpočetních vzorců pro každý ukazatel z modulu Valmorph a pomocí podkladových metod specifických pro každý ukazatel (Rosenzweig et al. 2012; viz obr. B-A2-4-1). Zpracování pro český vnitrozemský úsek Labe probíhá pomocí metodiky HEM (hydroekologický monitoring) dle Langhammery (2008). Tato metodika slouží ke sledování hydromorfologických charakteristik vodních toků a je dostupná prostřednictvím databáze ARROW (Langhammer 2007, 2008, 2013). Na české straně byly v rámci pilotního mapování provedeny analyzy na celkem pěti sekcích toku (viz kap. 5). Výběr sekcí pro hodnocení byl volen s ohledem na reprezentativnost vzhledem k velikosti toku, fyzičko-geografickým podmínkám a charakteru využití prostoru údolní nivy a antropogenních úprav koryta toku.

Výsledky v Německu jsou agregovány po 5km úsecech pro každý indikátorový ukazatel jednotlivě, v případě potřeby mohou být pro odvození doporučených postupů nebo při nejasnostech použity i výsledky s větší rozlišovací schopností v rastro 1 km. Hodnocení v České republice je prováděno na dělkové proměnlivých úsecech. Ty jsou vymezeny tak, aby byla zaručena homogenita ve vazbě na parametry a) horizontální průběh trasy toku, b) charakter využití příbřezní zóny a c) charakter úpravy
říčního koryta (homogenní sekce). Vyhodnocení jednotlivých ukazatelů se uchovává, aby bylo možné pomocí hydromorfologických indikátorových ukazatelů co nejpodrobněji znázornit převládající deficit v oblasti režimu sedimentů a využit je pro odvození a návrhy nezbytných operativních postupů. Uvedené 5km úseky v Německu byly stanoveny skupinou expertů Hydromorfologie a schváleny v rámci příslušných grémíí, jelikož pomocí těchto 5km úseků lze získává
ně výsledky ještě přehledně znázornit pro celou délku 586 kilometrů. Tyto 5km úseky však neodpovídají příslušným vodním útvaram, totéž platí i pro homogenní sekce českého úseku Labe.

Analyza hydromorfologických rizik se provádí pro každý jednotlivý hydromorfologický indikátorový ukazatel na základě příslušných stanovených metod a nejlepších dostupných datových podkladů. Na obr. B-A2-4-1 je patrné, že indikátorové ukazatele je nutno zpracovávat ve dvou krocích na základě jejich vyhodnocení a významu (centrálně ukazatele průchodnost pro sedimenty a průměrná změna nadmořské výšky dna – bilance sedimentů (SRN), resp. ovlivnění hydrologického režimu (ČR) a doplňkově ostatní hydromorfologické indikátorové ukazatele, viz výše).
To slouží pro orientaci, jak by se mělo provádět odvozen doporučených postupů pro dosažení cílů plánu managementu sedimentů: Přednostně je třeba využít hodnocení obou klíčových indikátorů hodnocených třídami 3, 4 a 5. Tyto ukazatele jsou posuzovány synergicky s hodnocením dalších indikátorových ukazatelů, které vykazují třídy hodnocení 3, 4 a 5. Konečné výsledky z hodnocení po analýze charakteristik se promítou do analýzy hydromorfologických rizik (viz obr. B-A2-4-1 a B-A2-4-2).

Pro třídy 1 a 2 není třeba zpracovávat žádné doporučené postupy ke zlepšení režimu sedimentů a hydromorfologických poměrů, jelikož příslušné hodnocené hydromorfologické indikátorové ukazatele již odpovídají referenčnímu stavu. Doporučené postupy se sestavují od třídy 3. Pro všechny tři třídy 3, 4 a 5 platí stejný požadavek na zpracování případných doporučených postupů. Z hlediska hydromorfologické a sedimentologické situace neodpovídá ani jedna z těchto tří klasifikací specifickým rámcovým podmínkám pro daný typ vodního toku. Třída 3 je sice poněkud lepší než třídy 4 a 5, představuje však také odchylku od referenčního stavu, a tedy i určitou degradaci. Je třeba vztít v úvahu, že čím více se odchylky od referenčního stavu blíží tříde 2, tím lepší jsou i možnosti nápravy pro dosažení třídy 2. K tomu jako průvodní jev přistupuje, že při porovnatelné ma-

lém nasazení lze docílit výrazného a dostačujícího zlepšení. Vedle zavádění opatření od třídy 3, která není méně důležitá než obě horší třídy, jsou na druhé straně při dosažení třídy 4 a 5 zjištěné hydromorfologické indikátorové ukazatele poškozené nebo zničené, takže i zde je třeba využít doporučených postupů pro dosažení lepších hydromorfologických poměrů, napomáhajících ke utváření vyrovnaného režimu sedimentů. To platí zejména pro erozní úseky dna toku Labe a jeho přítoků.

V neposlední řadě proto platí vypracovat doporučené postupy pro třídy 3, 4 a 5. Příslušné účinné mechanismy by měly zapùsobit tak, aby zde bylo dosaženo zlepšení sedimentologického / hydromorfologického stavu, přičemž třídy 3, 4 a 5 nestanovují pořadí priorit. Rozhodující je ocekování účinek na režim sedimentů a na hydromorfologický charakter, k čemuž dochází již od třídy 3, jakmile se dosáhne zvýšení jeho hodnoty na třídu 2. Přechod mezi třídami 2 a 3, a tudíž hranice mezi charakterem typickým nebo blízkým referenciálnímu stavu a variabilitou (třída 1 a třída 2) nebo mezi charakterem a variabilitou mimo typově specifické podmínky vodního toku nebo těmto typově specifickým podmínkám blízkým představuje tedy podle příslušného indikátorového ukazatele kvantitativní prahovou hodnotu typově specifickou pro vodní tok, od které se odvíjí doporučené postupy (roz hodnutí ano / ne). Přesto musí všech pět stupňů klasifikace k pro každý indikátorový ukazatel zůstát zachová- no a nebudou ani nadbytečné pro návrhy operativních postupů při rozhodování, zda je přijmuto či ne, jelikož popisují diferencované hodnocení každého indikátorového ukazatele, a ukazují tak i rozsah doporučených postupů ke zlepšení stavu. Jen tak lépe také posoudit, v jakém stadiu hodnocení se sledovaný ukazatel po realizaci opatření nachází a kolik dalších opatření bude nadto ještě případně zapotřebě k dosažení třídy 2. Z výše uvedených důvodů je také vyloučeno průměrování výsledků (viz výše). Účinky doporučených postupů je třeba zaměřit na deficitní oblasti (kap. 7).

Vedle deficitu sedimentů a nedostatečné průchodnosti pro sedimenty v důsledku příčných překážek, údolních nádrží, zpevňování ploch apod. je třeba s ohledem na převládající hydromorfologické poměry uvést jako „indikátor“ režimu sedimentů další antropogenní příčiny, jako je např. využívání území, ochranné hráze, úpravy vodních toků (např. včetně napřímování / zkraço-
vání toku, zpevňování břehů) a jejich údržby. Obecně platí, aby zlepšením průchodnosti pro sedimenty a zlepšením deficitu sedimentů, který převládá na
českém i německém vnitrozemském úseku Labe, bylo podporováno a zajištěno zvýšení vnosu sedimentů a zvýšená rozmanitost struktur. Toho lze dosáhnout např. častějším přidáváním splavenin, zvýšeným přinousm sedimentů z přítoků, zvýšením vnosů sedimentů z oblasti břehů a údolních niv, zlepšením průchodnosti pro sedimenty na příčných překážkách apod. a odpovídající kombinaci těchto různých možností. Přitom je však nutné prověřit dopady z hlediska kvality a plavby (viz tab. 7-2).

Shrnutí

Obrázek B-A2-4-2 závěrem shrnuje obecný postup při zpracování hydromorfologických aspektů managementu sedimentů a objasňuje začlenění a význam analýzy hydromorfologických rizik a jejich výsledků. Analýza hydromorfologických rizik představuje centrální spojovací článek mezi analýzou charakteristik a hodnocením hydromorfologických indikátorových ukazatelů a z nich vyvozených doporučených postupů (viz obr. B-A2-4-2). Analýza kromě toho poskytuje prvek pro celkovou rizikovou analýzu plánování managementu sedimentů pro Labe se všemi třemi aspekty kvalitou, kvantitou a hydromorfologii.

Analýza charakteristik

- naformulování cíle*, pozadí pojetí systému
- výběr a stanovení hydromorfologických indikátorových ukazatelů a příslušných metod
- změnování aktuálního stavu (analýza charakteristik) pro každý indikátorový ukazatel
- změnování referenčního stavu (analýza charakteristik) pro každý indikátorový ukazatel

Hodnocení

- vyhodnocení na základě porovnání aktuálního a referenčního stavu pro každý indikátorový ukazatel
- včetně vymezení deficitního charakteru pro každý indikátorový ukazatel
- 5-stupňový klasifikační systém pro každý indikátorový ukazatel, kvantitativní hodnocení
- předblízké výsledky
- ověření věrností výsledků ze strany skupiny expertů pro každý indikátorový ukazatel
- konečné výsledky pro každý indikátorový ukazatel

Riziková analýza

- analýza hydromorfologických rizik – odvození doporučených postupů (ano / ne – od třídy 3)
 - krok I: průchodnost pro sedimenty a průměrná změna nadmořské výšky dna – bilance sedimentů
 - krok II: variabilita štěrků, variabilita hlučiny, zrnostruktura složení dnevního substrátu, břehová struktura, resp. stabilita břehů vlevo / vpravo, údolní niva levý / pravý břeh

Výsledek

- doporučené postupy / návrhy na nakládání se sedimenty na základě hydromorfologického hodnocení a katalogu opatření
 - rozhodující je očekávaný účinek na režim sedimentů a na hydromorfologický charakter

Výhled / další kroky

- sladění s aspektem znečišťujících látek a s aspektem plavby (vyšší úroveň**)
- stanoven příkaz a doporučené postupy (nejvyšší úroveň**)

* definice referenčního, resp. cílového systému, tj. které stavby by měly být využity pro porovnání (různé formulace cílů u vodních toků vymezených jako „přirozeně“ a „silně ovlněné“);
** viz obr. B-A2-4-1 „Analýza rizik v kontextu koncepce pro nakládání se sedimenty“ pro Labe a jeho přítoky se všemi třemi přírodní a různými rovinami

Zdroje:

Obr. B-A2-4-2: Postup při zpracování hydromorfologických aspektů managementu sedimentů

A2-5 HYDROMORFOLOGICKÉ ZDOKUMENTOVÁNÍ A HODNOCENÍ ESTUÁRU SLAPOVÉHO ÚSEKU LABE VE SMYSLU KONCEPCE PRO NAKLÁDÁNÍ SE SEDIMENTY

Zásadní poznatky pro pochopení procesů a systému v estuáru Labe jsou obsaženy v koncepci pro úpravu toku a managementu sedimentů zpracované Vodní a plavební správou SRN (WSV) a Správou hamburského přístavu (HPA), v koncepci pro slapový úsek Labe a v systémových studiích I a II (BGF 2014, v přípravě).

Propojení zájmů plavby se zájmy ochrany přírody a dalších uživatelů bylo provedeno prostřednictvím integrovaného plánu povodí pro estuář Labe – IBP. Základní poznatky těchto vypracovaných dokumentů jsou zohledňovány v rámci údržby povrchových vod využívaných pro plavební účely v povodí Labe se
zřetelem na zlepšení ekologického stavu / potenciálu. Všechny tyto materiály představují odborný podklad pro následující zmapování a hodnocení hydromorfologického stavu slapového úseku Labe ve smyslu konceptu pro nakládání se sedimenty.

Jako silně ovlivněný vodní útvar (HMWB) je slapový úsek Labe výrazně zatížený, vede látkového znečištění také po hydromorfologické stránce v důsledku prohloubení koryta pro účely námořní plavby a v důsledku objektů protipovodňové ochrany. Slapový úsek Labe má však také několik velmi významných biotopů. Je zde rozdělen na šest funkčních oblastí - každá zahrnuje plavební dráhu, pásmo mělké vody, pásmo wattů a předhrází. Funkční oblast 1 se rozkládá od horní hranice slapových vlivů u jezu Geesthacht až po hamburský přístav a odpovídá úseku Labe, který je označován jako homolapový úsek Labe. Tato oblast zahrnuje úsek Labe od ř. km 585,9 do ř. km 615,3, resp. 614,5. Funkční oblast 2 se rozkládá od začátku úseku severního a jižního ramene Labe (Norderelbe a Süderelbe) prohloubených pro účely námořní dopravy až po lokalitu Mühlenberger Loch. Tato oblast zahrnuje úsek Labe od ř. km 615,3, resp. 614,5 do ř. km 633,0. Funkční oblast 3 se rozkládá na toku Labe v délce cca 17 km od lokality Mühlenberger Loch po severní špičku ostrova Lühesand. Tato oblast zahrnuje úsek od ř. km 633,0 do ř. km 650,0. Funkční oblast 4 se rozkládá na toku Labe v délce cca 32 km od severní špičky ostrova Lühesand (cca ř. km 650) po linii jaderné elektrárny Brokdorf – Freiburg (ř. km 682). Tato oblast zahrnuje úsek od ř. km 650,0 do ř. km 682,0. Funkční oblast 5 se rozkládá na toku Labe v délce cca 18 km (severní břeh), resp. cca 21 km (jižní břeh) od linie jaderné elektrárny Brokdorf – Freiburg (ř. km 682) po linii Zweidorf (ř. km 700) – uzávěrové zařízení na řece Oste (ř. km 703). Tato oblast zahrnuje úsek od ř. km 682,0 do ř. km 703,0. Funkční oblast 6 se rozkládá na toku Labe ve Šlesvicku-Holštýnsku v délce cca 27 km od Zweidorfu (ř. km 700) až po linii Friedrichskoogspitze – Kugelbake v Cuxhavenu (ř. km 727). Tato oblast zahrnuje úsek Labe od ř. km 700,0 do ř. km 727,0 (viz obr. B-A2-5-1).

Obr. B-A2-5-1: Poloha a rozloha funkčních oblastí 1 – 6 (zdroj: upraveno dle IBP 2012, str. 85)

1 http://www.portal-tideelbe.de/Projekte/StrumundSed/Tideelbe/index.html
2 http://www.tideelbe.de/
3 http://www.matfg.de/dn_00/43/html/2303501_U1/DE/03_Arbeitsbereiche/03_Projekte/04_Sedimente/sedimente_kuestenbereich_node.html?_nnn=true
4 http://www.natura2000-unterelbe.de/index.php
5 http://www.natura2000-unterelbe.de/index.php
6 http://www.naturforschung-a-landkreis-hildesheim.de/
Funkční oblast 1

Směrem po proudu pod obcí Drage začíná původní vnitrozemská delta Dolního Labe, která se rozprostírá (rozprostírala) až po tůň Mühlenberger Loch (funkční oblast 3). Dnes se Labe štěpí 17 km dále po proudu u Bunthausu. Dřívější četná ramena delta byla svedena formou kanálů do severního (Norderelbe) a jižního ramene Labe (Süderelbe). Slapový zdvih dosahuje 3,9 m u Bunthausu svého maxima ve slapovém úseku Labe. V posledních 50 letech se zde zvýšil zhruba o 1,0 m. Šířka toku kolísá od 200 do 300 m. Břehová linie je z velké části opevněna a rozčleněná výhony. Říční mělčiny - watty - jsou převážně úzké. Na delších úsecích lemuji břehy toku protipovodňové hráze bez předhrází. Předhrází je jen máloky širší než 300 m a jeho porost představují především rákosiny, břehové křoviny a lužní lesy (např. Heukenlock, předhrází u obce Laßrönnle). Větší území zeleně se vyskytuje jen v předhrázích v hamburské čtvrti Altenamme (Altenammer Vorland). V důsledku slapových vlivů, resp. vysokých stavů vody za přílivu tvoří ostatní zeleň jen úzké pásy. Na ochranných hrázích se pasou ovce. S výjimkou labských luk Borghorster Elbwiesen nemá tato funkční oblast žádné suchozemské plochy mimo dosah slapových vlivů.

Tuně ležící za ochrannými hrázemi (např. Kiebitzbrack, Hamburk) a dunová krajiná Besenhorster Sandberge (Šlesvicko-Holštýnsko) do funkční oblasti nepatří. Řeky Ilmenau (s přítokem Luhe) a Seeve jsou nejvýznamnějšími přítoky Labe ve funkční oblasti 1. Na ústí řeky Ilmenau stojí ochranný uzávěr proti bouřlivým přílivům, řeka Seeve je od Labe oddělena uzavírací propustí. Horní část slapového úseku Labe je využívána pro účely vnitrozemské plavby. Plavební komora v Geesthachtu spojuje dolní tok Labe ovlivňovaný přílivem a díky přítoku Ilmenau a Seeve je zde vytvořena přeproudová propustí, která umožňuje průchod jezera téměř mimo vliv přílivu.

Obr. B-A2-5-2: Znázornění funkční oblasti 1 (zdroj: IBP 2012, str. 89)
řováný přílivem a odlivem se Středním Labem bez slapových vlivů. K prohloubení kynety pro účely námořní dopravy v tomto úseku nedošlo. Odtok je usměrňován pomocí výhonů na trať vodní cesty.

Prohrábky pro účely údržby toku se provádějí jen lokálně a v minimálním rozsahu. Na rozdíl od ostatních funkčních oblastí zaujímají pásmo s hlubkou vody nad 10 m méně než 1 % vodní plochy. Zatímco mezi Geestachttem a Buntahusem je po celý rok zásobování kyslíkem dostatečné, vyskytují se v labských ramenech Norderelbe a Süderelbe fáze s nedostatkem kyslíku. Tento jev je důsledkem přesunu nedostatečně oksyličené vody z hamburského přístavu (funkční oblast 2) směrem proti proudu. Vzhledem k tomu, že funkční oblast 1 se nachází v blízkosti velkoměsta, má velký význam pro rekreační využití.

Tabulka T-A2-5-1 obsahuje popis vybraných abiotických ukazatelů funkční oblasti 1.

| Délka | říční km 585,9 (jez Geestacht) až říční km 615,3 (severně labské rameno Norderelbe, hranice území „Hamburské dolní Labe“ vymezeného dle směrnice o ochraně stanovišť), resp. říční km 614,5 (jižní labské rameno Süderelbe, hranice území „Hamburského dolní Labe“ vymezeného dle směrnice o ochraně stanovišť) |
|--------|
| Celková plocha | 1 748 ha (včetně rozšíření o území Georgswerder a Kreetsand vymezených dle směrnice o ochraně stanovišť: dalších 32 ha) |
| Šířka toku | 200 m až 300 m |
| Rozdělení krajinných pásů | - ohrázené oblasti: 206 ha (11,8 %) - předhrází: 534 ha (30,5 %) - watty a vodní plochy: 1 018 ha (57,7 %) |
| Slapový zdvih | 2,2 m na jezu Geestacht, 3,9 m v profilu Bunthaus |
| Koncentrace chloridů | pod 0,5 %w, resp. cca 160 mg/l Cl jako dlouhodobý průměr (= sladká voda) |
| Rámcová směrnice o vodách | koordinátní sloup funkční oblast Slapový úsek Labe: vodní útvar Labe-východ (Elbe-Ost), typ 20 vodní útvar vymezen jako silně ovlivněný (HMWB) |

Funkční oblast 2

Funkční oblast 2 (**viz obr. B-A2-5-3**) se rozkládá od začátku úseku severního a jižního ramene Labe (Norderelbe a Süderelbe) prohloubených pro účely námořní dopravy až po lokalitu Mühlenberger Loch.

Zahrnuje labská ramena Norderelbe a Süderelbe a od profilu Seemanshöft také hlavní tok Labe (tzv. „Stromelbe“). Charakter Labe ve funkční oblasti 2 je výsledkem úprav koryta v úseku rozvětvení toku

Obr. B-A2-5-3: Znázornění funkční oblasti 2 (**zdroj: IBP 2012, str. 109**)
u Hamburku v souvislosti s výstavbou přístavu evropského významu a vzniku milionového města. Dnešní stav je důsledkem staletí trvajícího procesu, kdy postupně docházelo k oddělování četných ramen rozvětvené vnitrozemské dehy od hlavního toku. Souběžně se na Dolním Labi provádělo v několika etapách prohlubování koryta, aby měly do přístavu možnost připlouvat stále větší lodě. K trvalým změnám labské krajiny v Hamburku rozhodující měrou přispěla také protipovodňová opatření, realizovaná po katastrofálním bouřlivém přílivu v roce 1962, a kanalizování toku Labe na severní a jižní rameno (Norderelbe a Süderelbe). V souladu s požadavky na přístavní účely a na ochranu před erozi a povodněmi jsou břehy obou ramen Norderelbe a Süderelbe, ale jižní břeh hlavního toku Labe téměř kompletně zpevněn dlahoubo nebo mají kolmé opevnění (štětové stěny, zdi).

Tabulka T-A2-5-2 obsahuje popis vybraných abiotických ukazatelů funkční oblasti 2.

Funkční oblast 3

- **Tok Labe** je charakterizován svou funkcí vodní cesty. Plavební dráha s hloubkou pro námořní lodě je předmětem intenzivní údržby. Severní břeh na území Hamburku až po město Wedel není z důvodu velmi silného otlivního součástí území zařazených do soustavy Natura 2000, která na tomto úseku zahrnuje pouze vodní plochy.

Západně od toku Wedeler Au navazuje mělčina Fährmannssander Watt, která je od dílného zavezení zátky Mühlenberger Loch největším sladkovodním wattem v Evropě. Tato až 1 km široká oblast wattů je chránněna čtyřmi výhoný; vybíhajícími daleko do toku. Směrem na západ až k přístavu Hetlinger Hafen se plochy wattů postupně zužováno a zmenšují až na úzký pruh písečné pláže. Na plochách předhrází se nacházejí pastviny a malé lužní lesy. Největší podíl zaújímají široké porosty skřípence a rákosi. Plochy bahnitých wattů poskytují tažným ptákům bohatou nabídku potravy. Písečné watty mají jako zdroj potravy menší význam, jako místo odpočinku je využívají především rackové.

K rozmanitosti struktur Dolního Labe přispívá ostrov Lühesand s pískovými náplavy a labské rame- no Lühesand Nebenelbe. Komplex skládající se z ostrova a ramena Labe nedosahuje však rozlohy a přírodního charakteru úseku Neßsand / Hanskalbands / labské rameno Hahnófer Nebenelbe. Na jižní špicce ostrova Lühesand leží tzv. Pionýrský ostrov, který je hnízdištěm národního významu pro kolonie racka bouřního a racka černohlavého.

Tabulka T-A2-5-3 obsahuje popis vybraných abiótických charakteristik funkční oblasti 3.

<table>
<thead>
<tr>
<th>Délka</th>
<th>říční km 633 (Mühlenberger Loch) až říční km 650 (severněší část Maršen Lühesand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celková plocha</td>
<td>5 207 ha</td>
</tr>
<tr>
<td>Šířka toku</td>
<td>Mühlenberger Loch až Wedel: cca 0,8 km, Wedel až Lühesand: 1,8 km až 2 km</td>
</tr>
</tbody>
</table>

Rozdělení krajiných pasem
- ohnivá stanice: 1 608 ha (31,1%)
- přechodná: 554 ha (10,6%)
- měkká (MTHw a MTHw): 1 026 ha (19,7%)
- pásma měkké vody od 2 m pod MTHw až MTHw: 465 ha (8,9%)
- pásma vody až 10 m pod MTHw: 764 ha (14,7%)
- pásma vody hlubší až 10 m pod MTHw: 780 ha (15,0%)

Slapový zdvih
- 3,43 m v profilu Crazn, 3,09 m v profilu Schau (Wedel), 3,09 m v profilu Hetlingen

Rámcová směrnice
- koordinační oblast Slapový úsek Labe: vodní útvár Labe-západ (Elbe-West), typ 22.3
- vodní útvár vymezen jako silně ovlivněný (MMWB)

Funkční oblast 4

Dále po proudu se nacházejí přírodně poměrně bližší úseky, zejména na dolnosaské straně. Mezi chráněnými oblastmi Asselersland a Allwördener Außendichek se rozprostraní rozsáhlé plochy past- vin, které z převážné části podléhají slapovým vlivům. Ostrov Schwarzenonsand, labské rame- no Schwarzenonsander Nebenelbe a mělčiny Brammer Bank představují významnou rozmami-
Ostrovy a labská ramena
Haseldorfer Binneneibe, Pagensander Nebeneibe, Schwarztumensander Nebeneibe, Glückstädtter Nebeneibe, zemědělsky nevyužívané ostrovy: Drommel, Auberg, Bishorster Sand, Pagensand, Schwarztumensand, Rhinplate. Většina ostrovů pochází z náplav písku na přirozené písečné lavice, na wattu a drobné marše. Jsou předponkádem pro další existenci labských ramen. Tato vedlejší ramena nabízejí akvatické habitaty o různé hloubce, s různým prouděním a vlastnostmi sedimentů. Pro společenstva estuáru plní nenahraditelné funkce. Labská ramena se využívají také pro rekreační účely a sportovní plavbu. Zatímco v nízké položených částech ostrovů se nacházejí přírodní blízké rákosiny a slapové lužní lesy, převládají na výši položených písečných plochách zalesněné plochy, suché louky a křovinaté porosty a suché trávníky, které sice samy o sobě jsou pro ochranu přirody hodnotné, ovšem v tomto rozsahu a v této formě jsou pro krajinu estuáru netypické.

Předhrází s rákosím a lužními lesy
Pastorenbarg, Eschschallen, části předhrází Kauftsandu, les Bielenberger Wäldchen, předhrází jižně od Glückstadtu, rákosiny na ústí řeky Stör. Největší nevyužívaná území předhrází se nacházejí v předpolí hrázi u obcí Haseldorf a Seestermünche. Po ukončení zemědělské činnosti se zde rozšířily rákosiny a ostřicové porosty, které jsou postupně osídlovány lužními křovinami.

Oblasti úk ovlivňované přílivem a odlivem
Předhrází: Twielenflether Sand, Asselersand, chráněná oblast Allwörden Außendeich, ohrázané oblasti se slapovými vlivy: Asselersand, Gauensiekersand, části Kauftsandu, zaústění lab-

Oblasti mimo dosah slapových vlivů Části Krautsandu byly od slapových vlivů zcela odděleny. Ve Stade, ve čtvrti Bützfleth a v Glückstadtu se nacházejí průmyslové areály a k nim náležející labské přístavy. Tyto areály bezprostředně sousedí s oblastmi zařazenými do soustavy Natura 2000. Hlavními oblastmi využívanými pro rekreační účely je nedaleké město Glückstadt a obce Krautsand a Kollmar.

Tabulka T-A2-5-4 obsahuje popis vybraných abiotických charakteristik funkční oblasti 4.

Délka	fiční km 650 (severní část ostrova Lühesand) až fiční km 682 (linie mezi jadernou elektrárnou Brokdorf – Freiburger Hafenpriel)
Celková plocha	14 048 ha
Šířka toku	příčný profil Julsand / Twielenflether: 1,3 km; příčný profil profilu Pagensand včetně naplaveného ostrova: 3,3 km; příčný profil Biomesche Wildnis / Brammer Bank: 3,7 km; příčný profil jaderné elektrárny Brokdorf / Freiburger Hafenpriel: 2,3 km
Délka břehového úseku	cca 101,6 km, z toho: nezastaveno: cca 67,3 km; pouze s výhony: cca 7,2 km; umělé náplavy: cca 0,7 km; s břehovým opevněním + výhony: cca 24,6 km
Rozdělení krajinných pásů	ohráznová oblast: 2 825 ha (18,5 %); předhrází: 3 302,3 ha (21,6 %); watty (MTnw až MTnw): 2 189,8 ha (14,4 %); pásma mělké vody od 2 m pod MTnw až MTnw: 977,2 ha (6,4 %); pásma vody od 10 m až 2 m pod MTnw: 2 964,4 ha (19,4 %); pásma vody hlubší než 10 m pod MTnw: 2 997,7 ha (19,7 %)
Slapový zdvih	3,05 m (vodoměrná stanice Stadersand), 2,81 m (vodoměrná stanice Glückstadt), 2,74 m u uzavírací propust na řece Stör (vně)
Koncentrace chloridů	0,5 % až 5 % (oligohalinní) hranice mezi mezohalinním pásmem (koncentrace solí nad 5 %) se periodicky posouvá proti proudu přibližně k linii Krautsand – Bielenberg
Rámcová směrnice o vodách	koordinační oblast Slapový úsek Labe: úsek funkční oblasti 4 od ř. km 650,0 po ř. km 654,9 = vodní útvar Labe-západ (Elbe-West) úsek funkční oblasti 4 od ř. km 654,9 po ř. km 682 = brakické vody Labe - oba vodní útvary hodnoceny jako silně ovlivněné (HNIWB)

Funkční oblast 5

Funkční oblast 5 (viz obr. B-A2-5-6) se rozkládá na toku Labe v délce cca 18 km (severní břeh), resp. cca 21 km (jižní břeh) od linie jaderné elektrárny Brokdorf – Freiburg (ř. km 682) po linii Zweidorf (ř. km 700) – uzávěrové zařízení na řece Oste (ř. km 703). Zahrnuje plochy okresu Stade (Dolní Sasko), Steinburg a Dithmarschen (Šlesvicko-Holštýnsko). Funkční oblast 5 odpovídá mezhalinnímu úseku estuáru. Přirozená koncentrace sodi ve vodě vykazuje jeho největší kolísání a gradienty na kratkém úseku. Zde se nachází hlavní oblast přirozeného pásma zákolu labského estuáru, které se kyvadlově pohybuje mezi Brunsbüttel a ústím řeky Stör v závislosti na odtoku vody z horní části povodí a sile přílivu a odlivu. V dlouhodobém průměru leží úsek s nejsilnějším zákalem mezi obcemi Freiburg a St. Margarethcn (ř. km 680 – 690). Silné kolísání hydrologických ukazatelů vydělí jen velmi málo organismů, což se odráží v poměrně nízkém počtu druhů bentosu a planktonu. Pravidelný přísun mořské vody zaručuje, že nedochází ke kyslíkovým deficitům. Koncentrace kyslíku se celoročně pohybuje zpravidla od 7 do 13 mg/l O_2. Od roku 1970 vzrostl slapový zdvih ve funkční oblasti 5 o 10 až 15 cm.

Obdobně výrazný vzestup slapového zdvihu jako ve vnitřní části estuáru zde však nebyl zaznamenán. Průběh trasy toku odpovídá dlouhé tažené křivce. Rozdělení krajinných struktur charakterizuje kon-

Vliv mořského přílivu a odlivu zasahuje přes rozvětvený systém slapových koryt daleko do oblasti před ochrannou hrází. Na protilehlém konvexním břehu převládají opačné poměry. Na území Dolního Saska se vytvořily velmi široké plochy wattů a mělčin. Z celkové délky 22 km břehové čáry je opevňeno pouhých cca 5 %. Nejmladší historie je charakterizována výstavbou hrázi, které byly budovány od konce 60. do začátku 80. let minulého století. Přitom došlo ke ztrátě téměř 4 500 ha záplavového území. Širší oblasti předhrází se vyskytují pouze v chráněné oblasti Hullen na úšoru řeky Oste. Zbyvající oblasti předhrází dosahují šířky 200 až 500 m. Plochy předhrází jsou přibližně z poloviny využívány jako louky a pastviny a druhou polovinou tvoří rákosové porosty. Území za hrázemi se využívá výlučně pro zemědělské účely. Zatímco v severní části bývalé vnitřní hráz převládá při velkém podílu chráněných ploch v majetku spolko-vé země využívání území jako louky a pastviny, dominovalo v jižní části zatím zemědělské využití. S výjimkou uzavíracích propustí a cest jsou bývalé oblasti za hrázemi až po druhou čáru trasy ochranných hrázi z převážné části bez stavebních objektů. Využití pro rekreační účely zde probíhá především formou cyklistické a peší turistiky.

V Brunsbüttelu se nachází nejvýznamnější průmyslový areál a centrum výroby energie ve šlesvicko-holštýnské části labského estuáru (mimo plánovací území). Stejně jako v ostatních funkčních oblastech na západ od Hamburku je dolní tok Labe upraven pro účely námořní plavby. Vjezd do Severomořsko-baltického průplavu je zabezpečen přes plavební komory v Brunsbüttelu, které mají pro lodní dopravu zvláště velký význam. Zařízení plavební komory představují zároveň významnou atrakcí pro veřejnost, každoročně si je prohlédne ne kolem 80 000 návštěvníků. V Brokdorfu se využívá písečný pás na patře hráz a pláž. Velká parkoviště a stanice s obytnými přístavy vedou ke koncentraci mototuristů v této oblasti.

Tabulka T-A2-5-5 obsahuje popis vybraných abiotických charakteristik funkční oblasti 5.

Funkční oblast 6

Ode konce doby vedoucí se v Německém zálivu zvýšuje hladina moře i slapový zdvih. S tím spojené zvýšené přínášené energie do ústí Labe zvětší na několika úsecích téměř na dvojnásobek. Velké písečné mělčiny a žlaby v ústí toku Labe jsou vystaveny intenzivní dynamice a přirozenou cestou se posouvají v cyklech stačí několika set let. Původní systém tři žlabů v ústí toku Labe byl pro zabezpečení plavební dráhy spojen stavbou koncentrační hráze Kugelbake na dva žlaby. Trať vodní cesty využívá stabilizovaný, jižní hlavní žlab, který probíhá těsně před dolnosaským břehem.

na pro ovce. Na východ od slavého koryta se po ukončení zemědělské činnosti vyvinuly na dílčích plochách porosty rákosin. Ve východní části území před hrázemi, kde se ochranná hráz nachází v bez-prostřední blízkosti toku, je tvorba předhrází podporována dřevěnými zábranami.

Severně od trati vodní cesty zahrnuje západní, polyhalinné úsek funkční oblasti mělčin Neufelder Sand, Medemgrund a koryto žlabu Medemrinne. Mělčina Medemgrund je rozsáhlá plocha wattů, ležících mezi oběma zbyvajícími hlavními žlaby ústí Labe. Na jižním břehu se rozkládají wattly a území předhrází, které se před ústím Oste až po usměrňovací hráz Glameyer Stack (200 m dlouhá příčná stavba na říčním km 716) postupně zužují. U vnější hráze u obce Belum je předhrází 1 500 m široké, západně situovaná sousední vnější hráz u obce Hadeln má předhrází široké jen pouhých 500 m, hlavní hráz v lokalitě Glameyer Stack nemá předpolí žádné. Od výstavby letní hráze v roce 1955 jsou slavého vlivy na největší část vnější hráze u obce Belum výrazně omezeny. Plochy kolem hrází u obcí Belum a Hadeln se využívají jako louky a pastviny. Až po ústí říčky Medem u Otterndorfu je přechod mezi předhrázím a watty příbuzně blízký přírodě.

Od ústí Medemu po Cuxhaven je břeh zabezpečen pohozem z lomového kamene. Na tomto úseku konvárního břehu (Altenbrucher Bogen) převládaly už od nepamatů erozní procesy. Usměrňovací hráz Glameyer Stack byla postavena již v roce 1802 s tím, že měla odklánět proudení od břehu. Dále ve směru toku Labe od obce Altenbruch probíhá suchozemská hranice chráněné oblasti „Dolní Labe“ podle směrnic o stanovištích v vzdálenosti 200 m až 500 m od břehu toku. Břeh a přilehlé oblasti v obcích Otterndorf, Altenbruch a Cuxhaven jsou hlavními místy intenzivního rekreačního využití. V úseku mezi Altenbruchem a Cuxhavenem převládají areály průmyslových podniků a přístavu.

Tabulka T-A2-5-6 obsahuje popis vybraných abiotických charakteristik funkční oblasti 6.

Obr. B-A2-5-7: Znázornění funkční oblasti 6 (zdroj: IBP 2012, str. 209)
A2-6 ANALÝZA RIZIK Z HLEDISKA KVALITY

Zásady
Předmětem analýzy rizik z hlediska kvality jsou relevantní předměty ochrany, které byly identifikovány v kontextu managementu sedimentů.

Analýza se provádí ve vazbě na znečištující látky, tj. pro každou z 29 relevantních znečištujících látek v kontextu managementu sedimentů (tab. 3-1).

Analýza rizik se provádí ve dvou stupních, postup je přehledně znázorněn na obr. B-A2-6-1:
1. Hodnocení na úrovni povodí za účelem identifikace oblasti původu partikulárně vázaných znečištujících látek – stanovení priorit u toků těchto látek podle dílčích povodí
2. Analýza ve vazbě na zdroje znečištění v oblastech původu identifikovaných v rámci stupně 1.

Stupeň 1: Stanovení priorit toku látek podle dílčích povodí
Stupeň 1 probíhá ve třech dílčích krocích a začíná klasifikací (příloha A2-3) sedimentovatelných plavení v relevantních profitech na Labi a jeho přítocích kategorie 1. Výsledkem je plošně rozsáhlý přehled pro každou znečištující látku, který umožňuje vyvozovat také zpětné závěry o vývoji ve sledovaném období.

Dílčí krok 2 sestává z odhadu podílů odносu (% F) znečišťující látky na celkovém odnose relevantního referenčního profilu (příloha A2-1). Relevantním referenčním profilom pro mezinárodní oblast povodí Labe (MOP) je Schnackenburg. Tento profil slouží k posouzení látkových odnosů z přítoků kategorie 1 a 2a (F_P1, F_P2a) a české části povodí (F_CZ). Zde se měří látkový odnos F_MOP. Relevantní přítoků kategorie 2b (F_P2b) se zjišťuje na základě povodní s odnoisy F_P3. Dílčí povodí (DP) má se zřetelem na příslušnou znečištění látku nadregionální význam tehdy, pokud % F_P3 překročí ve sledovaném období, které musí pokrýt široké spektrum různých odtokových podmínek, minimálně jednou hodnotou 10 %. Výpočty látkových odnosů se provádějí na základě nejlepší dostupné datové základny podle metodiky odsouhlasené v rámci MKOL (příloha A2-11).

Dílčí krok 3 spočívá ve zpracování nadregionálních bilancí odnosů ve vazbě na imise (příloha A2-12). Bilance odnosů se znázorňuje pomocí rozdílu látkových odnosů mezi dvěma referenčními profilem výše na toku (F_D) a níže na toku (F_U). Bilančními procenty pro tyto úkoly jsou – vzhledem k spojitostem s příslušnými referenčními profilem kvality (příloha A2-1) – referenční profile Obříství (F_O pro český úsek Labe), Hřensko/Schmilka/ (F_U pro český úsek a F_O pro německý úsek Labe) a Schnackenburg (F_O pro německý úsek Labe a mezinárodní oblast povodí Labe). Bilance látkových odnosů slouží zejména
k ověření správnosti odhadů podílů látkových odnosů, ale i k odhalení jejich nejistot a k odvození průkazného přístupu kontroly úspěšnosti prováděných opatření.

Pro slapový úsek Labe nelze bilanci látkových odnosů směrem do Severního moře prozatím provádět z metodických důvodů (Fanger a Kaptenberg 2007; Heininger et al. 2002). Referenční profil Seemannshöft představuje na základě dohody (MKOL; FGG Elbe) a také s ohledem na rozdělení útvarů povrchových vod podle Rámové směrnice o vodách bilancní profil limnického úseku Labe vůči brakickým vodám, resp. Severnímu moři. Stanovení priorit toku znečištujících látek ve slapovém úseku Labe se proto provádí podle kvality (klasifikace), na základě vnoznů z vnitrozemské části povodí v porovnání s odhady emisí a s přihlédnutím k omezením využívání toku, k nimž skutečně došlo, např. při managementu odtěžování nánosů.

Výsledkem stupně 1 je pro každé dílčí povodí specificky výběr znečišťujících látek, pro který bude ve stupni 2 provedena riziková analýza ve vazbě na zdroje znečištění.

Stupeň 2: Analýza zdrojů znečištění v dílčích povodích

V kontextu této koncepce pro nakládání se sedimenty jsou posuzovány níže uvedené typy zdrojů znečištění:

- Bodové zdroje (odpadní vody a bodové vno- sy z ukončené těžební činnosti). Metodika odhadu významnosti bodových zdrojů se nachází v příloze A2-9.
- Sedimenty / staré sedimenty. Sedimenty nejsou zdrojem znečištujících látek v běžném smyslu. Jsou však schopny v závislosti na situaci v toku a hydrologických poměrech akumulovat trvale nebo dočasně určité látky. Zde se posuzuje zdrojová funkce sedimentů vyvolaná hydrologickou situací na níže položené říční úseky.
- Staré ekologické zátěže a lokality s podezřením na staré ekologické zátěže na toku (následně označované jednotně jako staré ekologické zátěže na toku). Metodika odhadu významnosti starých ekologických zátěží na toku se nachází v příloze A2-10.
- Další zdroje (např. urbánní systémy). Zde je využito především vyhodnocení, které bylo provedeno v pověření Spolkového úřadu životního prostředí (MoRE 2013; Fuchs et al. 2010).

Pro odhad významnosti daného zdroje se používají tři kritéria, přičemž všechna musí být splněna:

1. Minimální koncentrace. Koncentrace minimálně jedné relevantní znečišťující látky překročí prahovou koncentraci definovanou v kontextu příslušného typu zdroje. V případě sedimentů musí roční průměr koncentrace relevantní znečišťující látky překročit horní prahovou hodnotu minimálně
A2-7 ODHAD MNOŽSTVÍ SEDIMENTŮ A STARÝCH SEDIMENTŮ V ZÓNÁCH SE ZKLIDNĚNÝM PROUDĚNÍM A ODHAD POTENCIALNÍCH ODNOSŮ

Sedimenty a staré sedimenty představují v kontextu koncepce pro nakládání se sedimenty relevantní typ zdroje, který je třeba posuzovat v souvislosti s analýzou rizik ve vazbě na zdroje (příloha A2-6). Odhad potenciálních odnosek v rámci stupně 2 této analýzy (viz obr. B-A2-6-1 v příloze A2-6) je přitom rozhodujícím krokem, pro který je nutné zjistit množství sedimentů v zájmovém úložišti. Proto byly v rámci této koncepce vyvinuty metody pro odhad množství sedimentů, které byly aplikovány v závislosti na situaci. Postup je vysvětlen na příkladu šesti projektů v české a německé části povodí, které zároveň představují reprezentativní výběr typických situací na vodním toku ve čléně povodí:

- Dílčí projekt 1: Výhonová pole Labe
- Dílčí projekt 2: Postranní struktury Labe
- Dílčí projekt 3: Plavební stupně na Sále
- Dílčí projekt 4: Postranní struktury Sály
- Dílčí projekt 5: Výhonová pole a postranní struktury českého volně tekoucího Labe
- Dílčí projekt 6: Staré sedimenty v Labi a jeho postranních strukturách v úseku od Pardubic po soutok s Vltavou

Dílčí projekt 1: Výhonová pole Labe

1. Na základě rozsáhlé rešerše literatury byly zdiskutovány typické charakteristiky pro klasifikaci výhonových polí (Frey, 2005; Wirtz, 2004; Rommel, 2010; Prohaska, 2009) a východnocy dřívější průzkumné práce ve výhonových polích Labe. Z celé řady možných klasifikačních charakteristik byla nejdříve posuzována následující kritéria (BGs, 2012): poměr stran (délka / šířka), poloha (říční km Labe, levý / pravý břeh) a tvar toku (konvexní / konvexní břeh). Druhá část štětění klasifikačních charakteristik proběhla v rámci projektu ELSA „Východnocení leteckých snímků Labe ke zjištění parametrů výhonových polí“ (Auswertung von Luft-

3. Výběr výhonových polí byl prozkoumán v letech 2010 a 2011 ve spolupráci s Vodnými a plavebními úřady (WSA) v Drážďanech, Magdeburku a Lauenburgu. Během pěti (týdenických) kampaní byl posuzován úsek Labe o délce toku cca 80 až 100 km. Na 270 z celkem 6 651 výhonových polí na vnitrozemském úseku Labe byly prohlídky, vzorkování i charakterizace provedeny přímo v terénu. Prozkoumána byla všechna výhonová pole známá z literatury (tzv. „povinná výhonová pole“). Průzkumy zaměřené na posouzení močností sedimentů se prováděly pomocí hloubkoměrů (obr. B-A2-7-1), průzkumy ke kvalitě sedimentů, resp. jejich stáří (čerstvé sedimenty nebo staré nánosy) pomocí průhledných vzorkovacích trubic (obr. B-A2-7-2).

Celkový dojem o povaze sedimentů byl nejprve charakterizován pojmy „bahnitý“, „štěrkovitý“ a „písčitý“. Množství bahna pak bylo následně popsáno slovy „hodné“, „málo“ nebo „žádné“. Zmapováno bylo také zvrstvení a nánosy.

Během průzkumů v terénu byly zčásti zdokumentovány i jeho klasifikační charakteristiky. Tabulka T-A2-7-1 ukazuje příklad formy a rozsahu souhrnu všech zjištěných dat.

4. Výhonová pole, obsahující bahno, vykazují určité klasifikační charakteristiky. Například množství kalů koreluje mimo jiné také s poměrem stran výhonového pole (obr. B-A2-7-3). Nejdříve bylo do korelačních výpočtů zahrnuto cca 270 zkušených

Obr. B-A2-7-1: Zaměřovací práce (zdroj: BfG)

Obr. B-A2-7-2: Vzorkovací trubice – zvrstvení (foto: BfG)

Obr. B-A2-7-3: Korelace množství bahna s poměrem stran výhonového pole (Hillebrandt et al., 2013)
Tab. T-A2-7-1: Charakterizace výhonových polí (příklad viz Hillebrand, 2013)

<table>
<thead>
<tr>
<th>Ř. km Lače</th>
<th>Poloha</th>
<th>Poč. čl. výhonového pole podle katastru výhonu WSV</th>
<th>Staniční výška na toku</th>
<th>Staniční výška na toku</th>
<th>Šířka pole zhávání výhonu</th>
<th>Šířka pole kmetiářů</th>
<th>Plocha max. zhávání výhonu</th>
<th>Plocha max. kmetiářů</th>
<th>Poměr stran</th>
<th>Plocha (A_{max})</th>
<th>Plocha (Q_{max})</th>
<th>Protokol</th>
<th>Fotografie</th>
</tr>
</thead>
<tbody>
<tr>
<td>133,590</td>
<td>pravý břeh</td>
<td>87</td>
<td>133,544 133,635</td>
<td>89,90 91,00</td>
<td>přímka</td>
<td>1214 1229</td>
<td>0,150</td>
<td>238 617</td>
<td>ano</td>
<td>12</td>
<td>ano</td>
<td>IMG2230</td>
<td></td>
</tr>
<tr>
<td>146,177</td>
<td>pravý břeh</td>
<td>115</td>
<td>146,118 146,236</td>
<td>91,00 118,00</td>
<td>konvenční břeh</td>
<td>5811 7355</td>
<td>0,702</td>
<td>2219 3854</td>
<td>ano</td>
<td>13</td>
<td>ano</td>
<td>IMG2240</td>
<td></td>
</tr>
<tr>
<td>370,080</td>
<td>pravý břeh</td>
<td>1451</td>
<td>369,988 370,071</td>
<td>97,29 83,00</td>
<td>konv. břeh</td>
<td>15062 12860</td>
<td>1,591</td>
<td>2061 3844</td>
<td>ano</td>
<td>III/15</td>
<td>ano</td>
<td>P10186-190</td>
<td></td>
</tr>
<tr>
<td>521,810</td>
<td>pravý břeh</td>
<td>3658</td>
<td>521,74 521,879</td>
<td>122,06 139,00</td>
<td>přímka</td>
<td>13676 15574</td>
<td>0,918</td>
<td>3044 5944</td>
<td>ano</td>
<td>6811</td>
<td>ano</td>
<td>P10186-190</td>
<td></td>
</tr>
<tr>
<td>526,615</td>
<td>levý břeh</td>
<td>2781</td>
<td>526,543 526,686</td>
<td>143,64 143,00</td>
<td>konvenční břeh</td>
<td>14555 14460</td>
<td>0,705</td>
<td>1931 7546</td>
<td>ano</td>
<td>6</td>
<td>ano</td>
<td>DSCN1550</td>
<td></td>
</tr>
<tr>
<td>528,907</td>
<td>levý břeh</td>
<td>2800</td>
<td>528,836 528,977</td>
<td>139,60 141,00</td>
<td>přímka</td>
<td>17502 17675</td>
<td>0,898</td>
<td>6320 8662</td>
<td>ano</td>
<td>13</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Jakmile byly identifikovány charakteristické výhony, bylo možné provést odhad celkového množství bahna výhonových polí za využití statistických metod. V dalším kroku následovalo provedení výhony polí s balonem po celé délce výhony ušlechtili určit širokou škálu výhony.

Kodifikace MČS, protokol na sedávací místnost bahna
Dílčí projekt 2: Postranní struktury Labe

Projekt řešila Vysoká škola aplikovaných věd (HAW; Heise 2013). Jako postranní struktury jsou v tomto dílčím projektu označeny všechny vodní útvary, které leží v údolní nivě a nemají žádné nebo jen málo zjevné spojení s Labem, ovšem mohou být zaplavovány za určitých povodňových situací \(Q_a, 3Q_a, Q_{\text{max}}, Q_s \). Přítok může po povodní docházet k ukládání sedimentů nebo k jejich výměně s Labem. U postranních struktur se jedná o jezera v předpolí hřázi, která vznikla po protření hřázi, o mrtvá nebo odstavená ramena Labe. V úseku mezi Hřenskem/Schmilkou a Geesthachtém leží cca 1 000 postranních struktur, přičemž jedna třetina má délku více než 500 m. Pouze tyto postranní struktury o významné velikosti představují plochu 31 km². Při odhadu množství sedimentů uložených v postranních strukturách se postupovalo následujícím způsobem (Heise 2013): 1. Pomocí hydrologického softwaru BFG „FLYS“ byla vytvořena databáze, do níž byly uloženy údaje o poloze všech postranních struktur v údolní nivě (říční kilometr, břeh řeky, povodňová situace, při níž dochází k napojení, resp. k zaplavení). Pro cca 300 postranních struktur o délce nad 500 m byly kromě toho zjišťovány tyto informace: plocha, vzdálenost od řeky, poloha vůči řece, způsob napojení (napojení přes další postranní strukturu, resp. přes území zarostlé vegetací). 2. Na základě této databáze bylo vybráno 15 postranních struktur, které se nacházejí na různých úsech toku (mezi říčním km 340 a 569) a které se navzájem liší svou polohou a vzdáleností od řeky i svým stavem napojení (1 zátoka, 4 odstavená ramena s napojením při průměrném ročním průtoku \(Q_s \), 8 odstavených ramen s napojením při průtoku \(2Q_s \) a 2 odstavená ramena s napojením při průtoku \(3Q_s \)), viz tabulka T-A2-7-2.

3. Po délce postranních struktur byly v závislosti na velikosti a charakteru odebrány na dvou až třech místech sedimentační jádra ke zjišťení vlastností sedimentů (zrnitost, TOC, obsah vody), stabilitu vůči erozi a obsahu znečišťujících látek. V místech, kde byla odebrána sedimentační jádra, byl zjišťován také příčný profil hloubky sedimentů pomocí hloubkeměříku, jak je popsáno v dílčím projektu č. 1. Přítok bylo v závislosti na šířce postranní struktury provedeno 3 až 5 sondáží, jak je znázorněno na příkladu na obrázku B-A2-7-4.

4. Hloubka sedimentů, obsah znečišťujících látek a erodovatelnost byly uvedeny do vztahu vůči charakteristikám postranních struktur a na tomto základě byl proveden odhad objemu sedimentů.

Tab. T-A2-7-2: Popis postranních struktur vybraných pro účely sledování

<table>
<thead>
<tr>
<th>Datum</th>
<th>Místo</th>
<th>Počet postranních struktur</th>
<th>Zařazení postranní struktury</th>
<th>Napojení při průtoku</th>
<th>Zaplavení při průtoku</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. 4. 13</td>
<td>Bleckede</td>
<td>1</td>
<td>oddstavená rameno</td>
<td>(3Q_s)</td>
<td>(3Q_s)</td>
</tr>
<tr>
<td>2. 5. 13</td>
<td>Sassendorf</td>
<td>2</td>
<td>zátoka</td>
<td>(Q_s)</td>
<td>(2Q_s)</td>
</tr>
<tr>
<td>16. 5. 13</td>
<td>Grippel</td>
<td>2</td>
<td>staré rameno</td>
<td>(Q_s)</td>
<td>(3Q_s)</td>
</tr>
<tr>
<td>23. 5. 13</td>
<td>Brandleben (naproti obci Dümitz)</td>
<td>2</td>
<td>staré rameno</td>
<td>(Q_s)</td>
<td>(2Q_s)</td>
</tr>
<tr>
<td>24. 5. 13</td>
<td>Darnatz</td>
<td>3</td>
<td>zátoka / staré rameno</td>
<td>(Q_s)</td>
<td>(2Q_s)</td>
</tr>
<tr>
<td>28. 5. 13</td>
<td>Losenrade (naproti Wittenbege)</td>
<td>2</td>
<td>oddstavené rameno</td>
<td>(2Q_s)</td>
<td>(3Q_s)</td>
</tr>
<tr>
<td>29. 5. 13</td>
<td>naproti Tangermünde</td>
<td>2</td>
<td>oddstavené rameno</td>
<td>(2Q_s)</td>
<td>(3Q_s)</td>
</tr>
<tr>
<td>30. 5. 13</td>
<td>u obce Gerwisch</td>
<td>1</td>
<td>oddstavené rameno</td>
<td>(2Q_s)</td>
<td>(Q_s)</td>
</tr>
</tbody>
</table>
Dílčí projekt 3: Plavební stupně na Sále

Řešením projektu se zabýval Špolkový ústav hydrologický (BfG; Claus et al. 2013). Říční koryto volně tekoucího úseku Sály se vyznačuje štěrkovitými sedimenty. Plavební stupně spolkové vodní cesty, zejména jejich rejdy, jsou naproti tomu sedimentační prostory se zklidněním prouděním, kde se ukládá velké množství jemnokrystalních, jak čerstvých, tak i starých sedimentů. Z tohoto důvodu se množství sedimentů zjišťovalo výlučně v plavebních stupních Sály. Průzkumné práce (Claus et al. in BfG 2013b) ke zjištění množství starých sedimentů na spolkové vodní cestě Sále byly provedeny společně s Vodním a plavebním úřadem (WSA) v Magdeburku.

Zaměřování příčného profilu prováděné WSV

V roce 2011 prováděl WSA Magdeburg zaměřování příčného profilu z lodí „Profil“ (echolot) v rejách Sály a jejich vedlejších ramenech s jezy. Ze zaměřování výšky dna toku bylo vypočteno celkové množství nánosů až po normovanou hloubku (obr. B-A2-7-5, příklad dolní reje Rothenburg). Tato data byla později využita k ověření dat pořízených BfG.

Obr. B-A2-7-5: Zaměřování příčného profilu (WSV) ke zjištění uložených sedimentů v dolní reži Rothenburg (Claus et al., 2013)

Zaměřovací práce BfG – názorné příklady

Ve zdymadlech (horních a dolních rejách, plavebních komorách, vedlejších ramenech Sály s jezy) Calbe (obr. B-A2-7-6), Rothenburg a Rischmühle bylo na 50, 22, resp. 21 měřicích bodcích provedeno zaměřování hloubkorem za účelem zjištění mocnosti vrstev sedimentů (obr. B-A2-7-1).

Souběžně s tím byla dokumentována kvalita sedimentů v souvislosti s jejich stříškou (čerstvé nebo staré nánosy) na základě odběrů vzorků z lodí (WSA Magdeburg) pomocí průhledných vzorkovacích...

Výpočet množství sedimentů
Objemy sedimentů byly zjišťovány na základě plošné velikosti zdymadel (odhad vodních ploch z ortofotomap) a znalosti množství sedimentů z modelových zaměřování v plavebních stupních Calbe, Rothenburg a Rischmühle. Za tímto účelem byla nejprve provedena data k usazování nánosů v těchto 3 plavebních stupních v porovnání s výsledky zaměřování profilů pořízených ve WSV. Vypočteny byly jak objemy celkového množství bahna, tak i podíl výlučně čerstvých usazenín (potenciál látkového odnosu), a to jak manuálně, tak i pomocí metody GIS. Extrapolace dat na všechny ostatní plavební stupně na Sály byla provedena následně pouze pro čerstvé usazené, potenciálně remobilizované sedimenty.

Metoda BFG 1: celkové množství bahna (čerstvé + staré), lineární interpolace mezi dvěma měřicími body, výpočet objemu „manuálně“
Metoda BFG 2a: celkové množství bahna (čerstvé + staré), vážená inverzní vzdálenost (IDW) mezi dvěma měřicími body, výpočet objemu metodou GIS
Metoda BFG 2b: množství čerstvého bahna, vážená inverzní vzdálenost (IDW) mezi dvěma měřicími body, výpočet objemu metodou GIS

Dílčí projekt 4: Postranní struktury Sály
Tento projekt byl zpracován v gesci Zemského úřadu povodňové ochrany a vodního hospodářství Saska-Anhaltska (LHW). Kontaminované sedimenty uložené v přítocích, vedlejších ramenech a postranních strukturách představují pro posuzovaný vodní tok latentní zdroj znečištění. Pro charakterizaci potenciálu látkových odnosů byla provedena analýza stavu starých sedimentů včetně zjištění polohy kontaminovaných sedimentů v točící, objemu sedimentů (konkrétně dle místa), výšky zatížení znečišťujícími látkami, a možnosti jejich remobilizace a z toho vyplývajících odносů znečišťujících látek pro Sálu (nesplavný úsek) včetně relevantních přítků a postranních struktur. Pro tyto účely bylo nezbytné provést a vyhodnotit technické průzkumy ke zjištění rozložení sedimentů / množství sedimentů a zatížení znečišťujícími látkami. Odhad množství starých sedimentů a stanovení potenciálu znečištění probíhalo v pěti pracovních krocích.

Rešerše, dotazování a pocházky v terénu ke zjištění a prvnímu hodnocení uložených sedimentů v točících

Obr. B-A2-7-7: Terénní prohlída / odhad objemu sedimentů (foto: LHW)

Sondování hloubkoměrem na vybraných místech uložené sedimentů za účelem odhazu jejich objemu
Ke konkrétnímu určení rozdělení množství v oblasti nánosů a k odhazu rozsahu a konzistence, resp. kompaktnosti uložených vrstev byly na vybraných místech uložení sedimentů provedeny sondy hloubkoměrem. Příslušné průzkumné práce proběhly ve dvou pracovních krocích:

- Horní hrana bahna, resp. hloubka vody byla určována pomocí konstrukce podobné Secchiho desce (obr. B-A2-7-8). Tato pomocná konstrukce se skládala z lehké zarázecí tyče, na niž byl na dolním zarázecím hrotem a metrickou tyčí zasažen 30centimetrové plastový kotouč. Pro lepší viditelnost v hlubších nebo kalnějších vodách byla pro tento plastový kotouč zvolena zářivě žlutá barva.
- V příjem návaznosti probíhalo měření tloušťky bahna pomocí metrické 22 mm štěrbinové sondy na zarázecí tyče s rozdělením po decimetrech jako u hloubkoměru. Štěrbinová sonda byla vložena do nánosu sedimentů až na dno koryta (vysoký
odpor proti průniku), čímž byla zjištěna vzdálenost od vodní hladiny. Využití štěrbinové sondy jako sondovacího hrotu sloužilo pro účely zjištění první reakce sedimentů.

Z rozdílu mezi polohou horní hrany sedimentů a polohou dna říčního koryta vztážené na vodní hladinu toku byla v daném místě konkrétně zjišťována mocnost uložených sedimentů. Pro každou lokalitu s nánosem sedimentů bylo měření prováděno a dokumentováno zpravidla na 10 jednotlivých místech.

Stanovení / odhad objemu sedimentů a hmoty sušiny sedimentů

Pro diferencované hodnocení uložených sedimentů a fixovaného potenciálu znečišťujících látok je nezbytné provést odhad objemu a hmoty sušiny v závislosti na hloubce nánosů (tab. T-A2-7-3).

Pro tyto účely byly výsledky zjištěné a získané v rámci průzkumů uložených sedimentů použity k odhadu objemu sedimentů a hmoty sušiny sedimentů následujícím způsobem:

- Určit uložení sedimentů podél dély, šířky a hloubky (změřit, zprůměrovat, extrapolovat).

Celkový objem vypočítán vynásobením dély x šířky x zprůměrovaných konečných hloubek.

- Objem ve vztahu k hloubce nánosů vypočítat vynásobením dély x šířky x rozsahu hloubek.
- Stanovit suchý objem vynásobením objemu zbytkem kalů v sušině TR.
- Stanovit suchý objem < 63 μm vynásobením sučeho objemu procentuálními podíly sedimentů ve frakci < 63 μm.
- Stanovení hmoty sušiny vynásobením suchého objemu hustotou v příslušné hloubce nánosu (tab. T-A2-7-4).

V případě, že nejsou k dispozici žádné hodnoty měření zbytku kalů v sušině, podíly sedimentů ve frakci < 63 μm ani hustoty, je třeba použít údaje z literatury nebo hodnoty získané na základě zkušeností a tuto skutečnost zaznamenat do dokumentace.

Odhad potenciálu znečišťujících látok (celkem a se zaměřením na hloubky)

Při odhadu potenciálu látkových odnosů byl postup následující:

- Vynásobení hmoty sušiny sedimentů v příslušných hloubkách hodnotami analyzovaných koncentrací znečišťujících látok v těchto hloubkách (stanovení v sušině vzorku),

- Sčítání potenciálů znečišťujících látok v příslušných hloubkách na celkovou hodnotu potenciálu znečišťujících látok pro konkrétní zkuoumanou lokalitu s nánosy sedimentů (tab. T-A2-7-5, příklad zímk).

Extrapolace potenciálů znečišťujících látok vázaných na sedimenty vypočtená pro konkrétní lokalitu

Odhad a klasifikace potenciálů znečišťujících látok vázaných na sedimenty pro chemicky neanalyzované nánosy sedimentů se provádí pomocí extrapolační potenciálů znečišťujících látok vázaných na sedimenty vypočtené pro konkrétní lokalitu. Zde jsou příslušným objemům sedimentů přiřazeny potenciály znečišťujících látok sušiny sedimentů určené pro

Tab. T-A2-7-3: Objev sedimentů podle hloubky nánosů ve starém rameni Calbe / Tippelskirchen

<table>
<thead>
<tr>
<th>Vodní tok</th>
<th>Název</th>
<th>Význam</th>
<th>Objem sedimentů</th>
<th>Objem podle hloubky nánosu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>změřeno, zprůměrováno, extrapolováno</td>
<td>cellkem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>délka m</td>
<td>šířka m</td>
</tr>
<tr>
<td>Sála</td>
<td>Sála vedlejší struktury</td>
<td>2a-b</td>
<td>Sa02</td>
<td>Calbe / Tippelskirchen, staré rameno</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Koncepce MKOL pro nakládání se sedimenty
konkrétní lokalitě. Zdá se, že v chemicky neanalyzovaných nánozech sedimentů převládají obdobné poměry ohledně fixace znečišťujících látek, podílů jemnozmného materiálu a kompaktnosti uložení, jsou potenciálně znečišťujících látek vůbec na objem sedimentů v analyzovaných lokalitách extrapolovány na neanalyzované lokalitě.

Dílčí projekt 5: Výhonová pole a postranní struktury českého volné tekoucího Labe
Hlavním řešitelem tohoto projektu byl státní podnik Povodí Labe. V rámci projektu „Význam Biliny jako historického a současného zdroje znečištění pro nakládání se sedimenty v povodí Labe“ (SedBiLa) byla zaměřena pozornost na lokality, ve kterých se mohou nacházet a hromadit staré kontaminované sedimenty, které představují potenciální riziko pro jakost sedimentů níže po toku. Jednalo se o prostory za výhonovými poli, koncentračními hrázkami, v ochranných přístavech a v postranných strukturách na úseku českého Labe mezi Ústí nad Labem a státní hranicí a dále na dolní části povodí Biliny, kde je jakost sedimentů přímo ovlivněna zdroji znečištění. Celkem bylo studováno 18 lokalit na Labi včetně dvou pozadových a 9 lokalit na Bilině.

Při odhadu množství sedimentů se využívala celá řada přístupů, které byly dány velikosti toku, resp. velikostí lokality a jejím charakterem. Vedle plošných údajů (šířka a délka sledovaného úseku, resp. plošné vymezení lokality) bylo nutno ohdahovat mocnost sedimentů v jednotlivých lokalitách. Kombinoval se terénní průzkum (zaměření lokalit, průzkumné sondy – odpichy železnou tyčí apod.) s studiem dostupných podkladů (mapové podklady, archiválie správce toku, provozní dokumentace údržby toku, studie záplavových území apod.). Tyto odhady jsou zatíženy určitou nejistotou vzhledem k heterogenitě uložení sedimentů, obdobně jako jsou vlivem heterogenity sedimentů zatíženy nejistotou údaje o jakosti sedimentů a obsahu jednotlivých znečišťujících látek. Přesto umožňují nalézt místa uložení sedimentů, která svým objemem a mírou kontaminace ve spojení s odhadem možného rizika remobilizace těchto sedimentů představují potenciální riziko pro jiné oblasti v povodí řeky Labe.

Dílčí projekt 6: Staré sedimenty v Labi a jeho postranních strukturách v úseku Pardubic po soutoku s Vltavou
Průzkumy prováděla Karlova univerzita v Praze v rámci projektu SedLa. Pozornost byla zaměřena na nejvíce zatížené oblasti středního Polabí, kde bylo zjištěno na základě rešeršních prací významné staré zatížení sedimentů. Výzkum byl zaměřen především na postranní struktury Labe – na staré meandry, ať již oddělené přirozeně nebo uměle – a nivu Labe. Tyto zóny nespadají do systematického monitoringu sedimentů Labe, ačkoliv mohou představovat značné riziko pro vodní ekosystém. Stará ramena jsou opětovně s Labem spojena za vyšších vodních stavů, kdy po opadu povodňové vlny a za poklesu rychlosti proudění dochází k usazování jemně sus-
penze, která právě řadu kontaminantů nese. Součástí výzkumných prací tvořilo i vzorkování sedimentů z vodotečí odvádějících srážkovou a částečně i odpadní vodu z vytípovaných průmyslových podniků.

V rámci těchto kritérií byla jako nejvhodnější zvolena oblast Pardubicka, kde leží chemický podnik Synthesia, a.s., a rafinerie PARAMO, a Neratovicko, kde se nalézá chemická továrna Spolana, a.s., které především v minulosti patřily k největším znečištěvatelům Labe.

Průzkumný monitoring byl na Pardubicku proveden v Rosickém rameně, zimním přístavu Parama a jako srovnávací lokalita bylo uvažováno Jarkovského jezera. Na základě těchto výsledků byly následně odebrány subakvatické sedimenty v nejvíce zatížených místech v maximální možné hloubce. Jednalo se o dvě lokality v Rosickém ramení, jednu lokalitu v zimním přístavu Parama a tři vrt byly provedeny v této oblasti v nivě Labe.

Na Neratovicku bylo provedeno průzkumné vzorkování z Libišské tůně, Libišské strouhy (ústí z areálu Spolany a.s.) a Starého Labe u Obříství. Výsledky potvrdily silné znečištění i v těchto starých ramech, proto bylo v lokalitě Obříství a na dvou lokalitách v Libišské tůni proveden hloubkový odběr subakovatických sedimentů. Současně byly v této oblasti provedeny vrt v nivě Labe z 5 odběrových míst a hloubkový odběr sedimentu z Libišské strouhy.

Pro odhad množství sedimentů bylo využito geomorfologických charakteristik terénu včetně terénních měření. Zohledněny byly parametry starých ramen, toku i charakter říční nivy. V případě Libišské tůně a Starého Labe u Obříství byly k dispozici batymetrické mapy, z mapových podkladů byly dále využity historické mapy zájmových oblastí, mapy záplavových území i rychlosti proudení. Z hlediska míry sedimentace byly zjištěny i detailní parametry hrázových staveb, případně propojení starých ramen s hlavním tokem Labe.

Mocnost sedimentů byla odhadnuta rovněž na základě průzkumu terénu (odpichy železnou tyčí),
výsledků odběrů subakvatických sedimentů a vrtů prováděných v nivě.

Ačkoliv výše uvedené metody neposkytují příliš přesné informace, lze i takto identifikovat rizika vyplývající z charakteru uložení a míry kontaminace sedimentu.

Nejistoty
Ve všech šesti dílčích projektech vyplývají největší nejistoty ve stanovení celkového množství sedimentů z extrapolace dat vybraných, analyzovaných lokalit na celé zájmové území. Pro střednictvím různých pomůcek, jako je např. předchozí klasifikace výhonových polí, byl učiněn pokus omezit tyto nejistoty na co nejmenší možnou míru.

Dílčí řešená území (1) výhonová pole Labe, (2) plavební stupně na Sále, (3) postranní struktury Labe a (4) Sály zahrnují velmi rozsáhlé plochy. Tyto plochy se dají stanovit pomocí leteckých snímků nebo metodami GIS.

Vysoká nesouřadnost rozdělení sedimentů a rozvrstvení sedimentů na ploše komplikuje zjišťování množství sedimentů pomocí zaměřování. Výpočet celkového objemu sedimentů proto může být pouze spolehlivým odhadem.

Předpoklad jednotné hustoty / kompaktnosti materiálu pro výpočet množství sedimentů ze zjištěných objemů je rovněž velmi silným zjednodušením.

A2-8 MOŽNOST REMOBILIZACE SEDIMENTŮ

Sedimenty a staré sedimenty představují v kontextu koncepce pro nakládání se sedimenty relevantní typ zdroje, který je třeba posuzovat v souvislosti s analýzou rizik ve vazbě na zdroje (příloha A2-6). Rozhodujícím krokem je přitom odhad remobilizovanosti v rámci stupně 2 této analýzy (viz obr. B-A2-6-1 v příloze A2-6). Proto byly v rámci této koncepce vyvinuty metody pro odhad možnosti remobilizace sedimentů, které byly aplikovány v závislosti na situaci.

Postup v české části povodí

V rámci projektu SedBiLa byly pro posouzení remobilizovanosti sedimentů použity matematické modely založené na znalostech zrnotočních dat. Vzhledem k rozdílům ve velikosti a charakteru toku Bíliny a Labe byl zvolen rozdílný typ hydrodynamických modelů.

Pro simulaci pohybu sedimentů ve vybraných lokalitách úseku Labe mezi Ústím nad Labem a státními hranicemi byl použit hydrodynamický modul a modul transporthu sedimentů pro výpočet říční morfologie 2D modelu MIKE 21 (DHI, a. s.). Po zpracování vstupních dat a sestavení vrstev pro simulaci byl model nakalibrován pomocí dostupných známých údajů včetně průběhu povodňových vln v letech 2006 a 2011. Výsledkem simulací jsou mapy změn dna a koncentrací, ve kterých je pro jednotlivé lokality znázorněn počátek pohybu sedimentů ve vazbě na hodnotu průtoku v Labi, vztázeno na vodoměrný profil Ústí nad Labem.

Pro simulaci pohybu sedimentů ve vybraných lokalitách dolního toku Bíliny byl použit 1D hydrodynamický model (DHI, a. s.), který byl kalibrován na základě hydrologických událostí v letech 2009 a 2011. Pro definici okrajových podmínek byly vytvořeny syntetické hydrográmy pro vybrané lokality. Následnými výpočty byly stanoveny průtokové podmínky remobi-
lizace jemnozrných sedimentů, tj. počátek pohybu sedimentů ve vazbě na hodnotu průtoku, vztaženo na vodoměrný profil Bílina – Trnice.

Výstupy simulací byly zpracovány do tabelární a mapové formy, ze kterých je patrná míra rizika remobilizace sedimentů pro sledované lokality na Bílině a na úseku Labe od Ústí nad Labem po státní hranice. Příklad je dán v obrázku B-A2-8-1.

Obr. B-A2-8-1: Riziko odnosu sedimentů v daných lokalitách v závislosti na průtoku (zdroj: Povodí Labe, státní podnik)
Postup v německé části povodí
Remobilizovatelnost sedimentů lze sledovat prostřednictvím cíleného umělého vyvolání odnosu za kontrolovaných podmínek (faktor substrátu) nebo na základě pozorování přirozeně se vyskytujícího odnosu, například při povodní (faktor lokality). Výhodou prvního přístupu je možnost zdokumentování pravdivých hodnot pro mobilizaci měřicích techniky za kontrolovaných okrajových podmínek, do značné míry nezávisle na hydrologické situaci. Cílené vzorkování nánosů je ovšem vzájemně s vysokou náročností na měření techniku omezeno na jednotlivé lokality, takže kvůli známé vysoké proměnnosti erozní stability lze provádět výpovědi pouze pro malé plochy. Pozorování mobilizace při povodní naprosto tomu předpokládá, že se v případě takové situace provádí velký počet měření za většinou nepříznivých podmínek. Obě metodiky by se měly uplatňovat tak, aby se účelně dopříčovaly. Zvolené příklady jsou reprezentativní pro celé povodí Labe.

1. Faktor substrát
Stěžejním bodem zpracování mobilizovatelnosti je faktor substrát, který zahrnuje:

- specifikaci vhodných parametrů pro odhad mobilizovatelných podlů sedimentu vázaných na substrát,
- znázornění a vyhodnocení provedených a existujících analýz,
- odvození metodiky pro odhad erozní stability kohezivních sedimentů.

Parametry a strategie stanovení

Pro odhad erozní stability, resp. mobilizovatelnosti je tedy předpokladem podchycení začátku eroze měřicí technikou.

Pro kvalitu dat je důležité vedle dodržení ustálených protokolů co nejméně narušení sedimentů před měřením.

Pro stanovení erozního smykového napětí byly v povodí Labe použity dvě metody měření: Podélný žlab k měření in situ ve výhonových polích Labe a postranních strukturách na území Alaska-Antahtska a systém mobilních erozních komor k měření v místě odběru na různých postranních strukturách Labe bez napojení nebo s omezeným napojením na řeku.

Vzhledem k tomu, že odpor nánosů vůči erozi, jak je známo, silně kolísá a pomoci výše uvedené metody je kromě toho vzorkována výlučně svrchní vrstva sedimentů, lze doporučit, aby vedle přímočtení stanovení kritického smykového napětí dna pro erozi byly na vybraných místech prověřeny korelace s určitými vlastnostmi uložených sedimentů, které umožněj odhadnout erozní stabilitu dalších uložení sedimentů v stejné oblasti. Relevantní parametry jsou přitom například zrnitostní složení, obsah zeminy (podíl zrnitostní frakce < 2 m3), hustot uložených sedimentů nebo obsah organických látek.
Měření pomoci podélněho erozního žlabu (výhonová pole na Labi a přílohy Labe v Sasku-Anhaltsku)

Příslušné průzkumy v povodí Labe byly provedeny na vybraných lokalitách. V rámci projektu „Remobilizační potenciál kontaminovaných starých sedimentů ve vodních tokcích Sasko-Anhaltska“ (G.E.O.S. 2013) byly provedeny průzkumy na 15 vybraných lokalitách na toku Sály (nesplavný úsek), Bode, Černého a Bílého Halštrova a na toku Schlenze. Pro charakterizaci často se vyskytujících říčních úseků byly průzkumy ke stanovení potenciálu remobilizace provedeny na níže uvedených typických lokalitách toku:

- objekty zdrží s průtočnými částmi (Staßfurt, jen Oeblitz, Bad Dürrenberg)
- pásma klidné vody (odstavená ramena Calbe a Plötzkau)
- tekoucí úseky řeky Bode (Hohenexleben, Staßfurt) a Schlenze (Friedebug)
- tekoucí úseky Bílého Halštrova (Osendorf, Hubschütz Döllnit)
- průtočné postranní struktury Sály (Steinmühle, Schwanenbrücke, Rabeninsel, Wettin).

Analogické průzkumy byly zadány v 6 vybraných výhonových polích Labe mezi ř. km 430 a ř. km 510.

Tyto průzkumy realizoval Ústav modelování vodních a environmentálních systémů (IWIS) na katedře vodních staveb a vodního hospodářství Univerzity Stuttgart. Na obrázku B-A2-8-3 je zachyceno využití měřicího přístroje in situ.

Obr. B-A2-8-3: Podélý žlab Univerzity Stuttgart k podchycení kritického smykového napětí dna pro erozi in situ (zdroj: IWS 2013a)
Vedle měření in situ na samotném vodním toku byla odebrána jádra sedimentů, u kterých se prováděly další analýzy v laboratoři vodních staveb IWS. Obrázek B-A2-8-4 znázorňuje odběr jádra a ukazuje příklad jádra sedimentů z výhonového pole Labe. Zjišťovány byly hloubkové profily odporu vůči erozi a míry eroze a hloubkové profily zrnitostního složení, hustoty uložených sedimentů a dalších sedimentologických a chemických ukazatelů. Sledované ukazatele a získané výsledky jsou zdokumentovány v příslušných odborných zprávách (IWS 2013a, IWS 2013b).

Obecně lze konstatovat, že hodnoty erozní stability vykazují silné rozptýlení. Bylo však možné pozorovat různé zásadní závislosti. Vzorky s vysokým podílem písku v rozsahu ≥ 60 hmotnostních procent vykazovaly většinou velmi vysokou hustotu kolem 2 t/m³ a zároveň nízké kritické směrové napětí dna pro erozi v rozsahu < 1 N/m². Naproti tomu náanosy s významným podílem kohezivních sedimentů (zde je rozhodující obsah jílu v rozsahu ≥ 10 %) vykazovaly nižší hustotu (1,2 až 1,6 t/m³), jejich odolnost vůči erozi však byla zároveň většinou výrazně vyšší, ovšem s velkým kolísáním v rozsahu hodnot (1 až 10 N/m²). Vliv změny hustoty při současném konstantním zrnitostním složení hrál u vzorkovaných nánosů v porovnání spíše podílnou roli. Růst erozní stability spolu s hloubkou na základě ustalovacích jevů se projevoval v rozsahu od 0,5 do 1 N/m². Významnou závislost na obsahu organických látek se nepodařilo zjistit. Jako pragmatický přístup na základě dosavadních omezených zkušeností v povodí Labe se proto nabízí seřazení nánosů podle jejich zrnitostního složení.

Měření pomocí mobilního systému erozních komor (postranní struktury Labe)
Pro měření v terénu se používala kulatá erozní aparatura „Mikrokosmos“, u které se dvou překrývajících se zásadním zájmem získává prostorové homogenní rychlost vytvořující směrové napětí na povrchu sedimentů. Pro tento účel se aparatura umístí v definované vzdálenosti nad povrchem jádra sedimentů (průměr 10 cm). Skládá se mimo jiné z rotujícího kotouče, který vyvolává rychlost proudění nad povrchem sedimentů, která od vnitřního okraje směrem dovnitř klesá. Uprostřed aparatury se během měření definovaným způsobem odčerpává objem kapaliny, který se na kraji jádra sedimentů opět přidává. Tímto dostředivým zvyšováním rychlosti proudění se vyrovnává gradient rychlosti vyvolaný rotujícím prouděním. Postupné zvyšování erozního směrového napětí probíhá progresivním zvětšováním síly proudění.

Metodika pro odhad rizika eroze
Pravděpodobnost eroze tělesa sedimentů se skládá z kritického směrového napětí dna pro erozi a pravděpodobnosti překročení této kritické hodnoty reálným vlivem proudění. Kritické směrové napětí dna pro erozi je, jak je popsáno výše, v zásadě vlastnost ukládání sedimentů, tedy hodnota směrového napětí dna, při jejímž překročení dochází ke zásadnímu zániku běžné erozně.

Obr. B-A2-8-4: Odběr jader sedimentů za účelem zjištění erozní stability v hloubkovém profilu a ke zjištění doplňkových ukazatelů, jako je zrnitostní složení a hustota uložených sedimentů v hloubkovém profilu (zdroj: IWS 2013a)
mou smykového napětí dna je naprosto vlastnosti proudění. Oba parametry, kritické smyk-
vé napětí dna pro erozi a pravděpodobnost jeho překročení, se dají stanovit obtížně a s určitou spol-lehivostí pouze lokálně. Pokud chybějí spolehlivé informace o pravděpodobnosti překročení kritické-
ho vlivu proudění, mělo by se podle zásady pre-
vence vycházet z toho, že při zvýšených průtoci-
ch a příslušném proudění nad uloženými nánosy může dojít k překročení kritické hodnoty. Konečným znakem rozlišujícím ukládání sedimentů v podmínkách tendenci spíše erozně stabilních nebo ohrožených erozi pak zůstává jen hodnota kritického smykového napětí dna. Jak bylo popsáno výše, bylo možno ve vzorkovaných nánosech ve výhonách polích Labe a v sasko-anhaltských přítocích připsat nejvyšší vyp-
povídač hodnotu pro kritické smykové napětí dna zrnitostnímu složení, resp. obsahu písku, prachu a jílu v uložených nánosech. Výsledky jsou konsistent-
dí Labe s obsahem jílu ≥ 10 % na základě jejich vý-
znamných kohezivních vlastností spíše jako erozně stabilní. Ostatní jemnozrnné nánosy jsou klasifiková-
ny spíše jako snadno erodovatelné. Při průzkumech v podélém žlabu se ukázaly zejména nánosy s vy-
sokým podílem písku jako snadno mobilizovatelné. Na druhé straně se však kvůli jejich spíše menšímu obsahu znečišťujících látek většímu průměru znánná dál klasifikovat riziko, vycházející z jejich mobilizace, jako menší v porovnání s jemnějšími, ale rovněž méně kohezivními nánosy.

Zde provedené rozdělení nánosů jemných sedimentů do dvou skupin (snadno, resp. nesnadno erodovatelné) představuje velké zjednodušení skutečné situace, které se ovšem provést, aby bylo možno v měřítku povodí provést odhady a stanovit priority opatření. V případě mobilizovatelnosti by se v zásadě mělo usilovat o podrobnější rozdělení a odhady, což je v současné době vzhledem k aktuálnímu stavu znalostí a omezeným souborům dat možné provádět pouze lokalně.

Nejistoty

V souvislosti s umožněním přenosu zjištěných výsledků z několika mělo vybraných lokalit na další lokality byla analizována korelace zjištěné erozní stability s různými dalšími parametry, které lze pořídit snadněji. Jako relevantní ukazatel byla identifiková-

na především kohezivita uložených sedimentů, zde vyjádřená podílem na částicích jilové frakce ≤ 2 µm. Datový soubor, týkající se obsahu jílu pro všechny kontaminované nánosy, je vešker velmi malý, což v současné době nedovoluje plošný přenos výsledků. K tomu přistupuje nejistota ve stanovení podílu koh-
hezivních frakcí, která může v souvislosti s metodikou měření a úpravou vzorků podléhat výraznému kolísání. V jednotlivých případech je třeba prověřit, které zrnitostní frakce, resp. které prahové hodnoty podílů určitých frakcí je třeba považovat za směrodatné pro erozní stabilitu.

Z praktického hlediska byly aplikovány dvě různé me-
dotyky měření erozní stability (podčlověk žlab, systém erozních komor). Poskytují vztah mezi tyto metody porovnatelné výsledky, pokud jde o absolu-

tní číselné hodnoty, vykazují však nejistoty, protože dosud nebyla provedena žádná přímá porovnávací měření.

V prováděných sledovacích pomocí podčlenného žlabu stanovil zpracovatel začátek eroze vizualně prostřednictvím monitorování měřicího pole kamérou. Určitá subjektivita zde vede k nejistotám, ovšem vzhledem k přirozenému rozptylu hodnot je tento vliv považován významově spíše za podřadný.

Při vyšší různorodosti uložených sedimentů nemusí být lokalně podchycen hodnoty za určitých okolností reprezentativní pro větší plochy.

Vede toho zůstává již tematizovaná nejistota stano-
vení, zda, resp. kdy dochází při určité hydrologické udalosti k překročení zjištěných hodnot kritického smyko-
vého napětí dna. V závislosti na topografii v okolí uložených sedimentů může být pravděpodobnost překročení lokálně velmi rozdílná. Vzhledem k obtížnosti poměrně spolehlivého stanovení této pravděpodobnosti překročení se zde podle zásady prevence vychází z toho, že při zvýšených průtoci-
ch a příslušném proudění nad uloženými nánosy může také dojít k překročení kritické hodnoty. Ke stanovení rizika remobilizace se proto využívá pouze erozní sta-

bilita.

2. Faktor lokality – metodika odhadu remobilizace starých sedimentů vyvolané povodně

Povodňové situace mají vzhledem k dobré tváření nadměrně vysoký podíl na transportu látek (odno-
sy plavenin a odtoky znečišťujících látek). Odhady remobilizace starých sedimentů v dilúčich částech říčního systému, spočívající na erozní stabilitě, mo-
hou být na základě pozorování uplynulých povodní prověřeny, nakolik odpovídají realitě. Při zpracování koncepce pro nakládání se sedimenty byly použity níže uvedené podklady:
- Souhrnný přehled významných povodňových si-
tuací na Labi vztázaných na vodoměrnou sta-
nici Wittenberge při Q > 1080 m³/s (období 1994 – 2011). Přehled obsahuje mimo jiné dobu kulminace v profilu Wittenberge, dobu, která uplynula od předchozí události, dobu trvání události, příspěvek velkých přítoků a typ vzniku povodně a regionální typ.
- Výsledky z řádného programu měření Labe pro příklady povodňových období.
- Výsledky mimořádných programů měření a řádného programu měření při povodní na jaře 2006
- Koncentrace plavenin (2003 – 2008) v měrných profilech Torgau, Wittenberg, Aken, Barby, Tangermünde, Wittenberge (měřicí síť plavenin WSV)
- Program měření pro extrémní hydrologické situ-
ace na Labi, červen 2013.

Výsledky
Remobilizace sedimentů vyvolaná povodňovými událostmi může být prokázána přímou nebo nepřímou cestou. Nejpřímé metody využívají koncentrace plave-
nin, zatížení plavenin nebo zatížení celkového vzorku vody, aby vytvořilo vztah mezi unášenými plaveninami a uloženými sedimenty nad měrným profilem. Zatímco je poměrně jednoduché prokázat, zda dochází či ne-
dochází k remobilizaci sedimentů, vyžaduje kvantifi-
kace množství remobilizovaných sedimentů rozsáhlá terénní měření a je spojena s velmi velkými nejistota-
ní. Na základě přímořaného porovnání objemu jemných sedimentů, uložených např. ve výhonovém polí před a po povodní (Schwartz, 2006), lze provádět od-
had množství remobilizovaných sedimentů. Po zis-
kání příslušných analytických dat se dá vypočítat také množství remobilizovaných znečišťujících látek. Prostorová přenositelnost výsledků je možná pouze za podmínky obdobných poměrů v sousedících (typově stejných) výhonových polích.

Koncentrace plavenin v jednom měrném profilu odráží vede bilance remobilizace sedimentů výše proti proudu také bilanci vnosu a odnosu pevných lá-
tek a produkci planktonu na základě variabilní vod-
nosti toku s jejím účinkem řešení a zakoncentrova-
ření. Na vzestupu povodňové vlny převládají procesy re-
mobilizace sedimentů a vnos pevných látek. Hrubý odhad relativního významu vnosu pevných látek lze provádět prostřednictvím sledování hydrometeorolo-
logického vývoje vzniku povodně (např. intenzivní srážky, obleva) a sezónního vegetačního pokryvu. Koncentrace, resp. odnose plavenin očištěné o podíl
vnosu pevných látek pak odpovídají podílu remobili-
zovaných sedimentů [na vzestupu povodňové vlny].

Jakost plavenin / vody v určitém měrném profilu je pak výsledkem sumy ovlivňujících faktorů působících vyše proti proudu. V případě povodní vykazuje většína naměřených koncentrací znečišťujících látek v plaveninách nebo v celkovém vzorku vody charak-
teristickou dynamiku. Podle toho, v jakém časovém rozlišení byly průkumy prováděny (denní průměry, měsíční střední vzorky), lze odhadnout postupovou dobu průtoků (a prioritní oblast původu jednotlivých znečišťujících látek) nebo také zvýšení koncen-
trací v důsledku povodní, které se mohou vztahovat mimo jiné i na remobilizaci příměřeně zatížených starých sedimentů. Pokud jsou známy transportova-
né látkové odnose pro daný případ povodní, zatížení sedimentů v povodí a další vnosy a emise, může být proveden odhad množství remobilizovaných starých sedimentů. Tento odhad vyžaduje pro minimaliza-
ci nejistot upravený program měření s vysokým časovým rozlišením. Za tímto účelem byl koncipován program měření pro případ extrémních situací (FGG 2012), data z povodně v červnu 2013 by měla přinést významný pokrok v poznatcích.

Charakteristickým prvstem středního a dolního úse-
ku Labe jsou výhonová pole, ve kterých se nachází poměrně významné množství sedimentů. V případě, že při zvýšených průtocích dojde k přetížení výkonů, začíná eroze nezpevněných sedimentů ve výhono-
vých polích a nastává prudký vzestup koncentrace
plavenin (Baborowski et al., 2004). Pro Magdeburk je pro tento proces udávána prahová hodnota 800 m³/s (Spott a Gruh, 1996 [cit.: Baborowski et al., 2004]), pro Wittenberge prahová hodnota 1 080 m³/s (Baborowski et al., 2007). Na základě koncentrací plavenin (2003 – 2008) sledovaných v rámci měřicí síť plavenin WSV a průtoků na referenčních profilech byl proveden od-
had prahových hodnot průtoků specifických pro pro-
fily Torgau (500 m³/s), Wittenberg (500 m³/s) a Aken (700 m³/s). Jak ukazuje obrázek B-A2-8, byly i pod touto prahovou hodnotou např. při menších vláčích ve vůnoru a březnu 2006 průtoky plavenin výrazně vyšší.

Pro období 1994 až 2011 byl zpracován souh
příkladu povodňových událostí na Labi vztázaných na
průtok > 1 080 m³/s ve vodoměrně stanici Wittenberge. Extrémní povodně byly vybrány na základě metody
Schwanda a Hübnera (2009) a zvlášť zvýrazněny.
Pro tuto období povodňových situací byla provedena rešerše podle výsledků vzorkování sedimentů (sedimentační nádrž nebo odstředivka) a vzorky vody.

Časově ucelené vzorky, jako jsou měsíční směsné vzorky ze sedimentačních nádrží plavenin, mohou při dobrém časovém souběhu povodňové epizody a období odběru vzorků podpořit celkové hodnocení případu povodně, zejména ve srovnání s průměrnými poměry. Na obrázku B-A2-8-6 je zaznamenána převážně vyšší koncentrace kadmu v měřicí stanici Seemannshöft během povodňových situací v porovnání s ročními průměry, což lze interpretovat jako důkaz remobilizace starých sedimentů zatížených kadmem.

Nejistoty

Pro zjištění koncentrace plavenin se vzorkování provádí zpravidla v jednom bodě za předpokladu, že se jedná o reprezentativní odběr vzorků. Za tímto účelem by mělo být ve vodním útvaru dosaženo komplexního promíšení bez rozdílů koncentrací v průtočném profilu toku. Tento předpoklad se na základě mnohobodových měření koncentrací plavenin přes celý příčný profil nepotvrdil (Naumann et al., 2003, str. 41).

V případě využití výsledků z řádných programů měření Labe a mimořádných programů měření je třeba si uvědomit nejistoty, vyplývající z laboratorních analýz, např. při použití rozdílných postupů / mezi stanovitelností během určitého časového období a mezi různými laboratořemi.

Obr. B-A2-8-5: Koncentrace plavenin v labském měrném profilu plavení Wittenberg (říční km 216,3) a průtok ve vodoměrné stanici Wittenberg v období leden až květen 2005 a 2006
Odhad látkových odnosů unášených napříč příčným profílem toku je spojen s velkými nejistotami. V případě povodňového vzniku vody se stanovení průtoků, jako jsou hustozemní efekty, vybřezení mimozný příčný profil, slabiny tabulky průtoků odpovídajících vodním stavům hladiny při extrémních průtokech (málo podložených měření, překročení rozsahu hodnot tabulky průtoků).

Vznik ohlašovací povinnosti je ve vztahu k IRZ vázán na následující předpoklady: existence provozovny, existence úniků nebo přenosů, překročení stanoveného množství prahového ohlašovacího prahu za příslušný ohlašovací rok – v případě, že množství znečišťujících látok v únikcích (do ovzduší, vody a půdy) nebo v přenesech (v odpadních vodách, v odpadech) je vyšší než stanovený stanovený množství produkovaných odpadů (stanoven ohlašovací pruh pro nebezpečné odpady 1 t/rok a pro ostatní odpady 2 000 t/rok).

Postup v německé části povodí

Pro zjištění relevantního množství vypouštěného znečišťování v odpadních vodách byl pro referenční rok 2008 sestaven přehled údajů látkových odvodů z registru E-PRTR. V tomto přehledu jsou zohledněny čistitiny odpadních vod s kapacitou nad 10 000 ekvivalentních obyvatel (od velikostní třídy IV) a velké přimě průmyslového znečišťení s látkami relevantními pro Labe, pokud vypouštějí odpadní vody přímou do Labe nebo do vodních toků, hodnocených v kontextu managementu sedimentů jako relevantní **(příloha A2-1)**. Kromě toho bylo zohledněno další látkové odnoby vypouštěné do těchto toků na základě odborných odhadů spolkových zemí. V případě, že nebyly k dispozici žádné údaje o látkových odnosech, byl odhad těchto odnosů v odpadních vodách zjišťován na základě množství splašových vod za rok a roční průměrné koncentrace. Údaje o koncentracích pocházejí z vlastní kontroly nebo z úředního monitoringu. Hodnoty z vodopárných povolení na vypouštění odpadních vod nelze pro posuzování látkových odnosek používat, jelikož zpravidla obsahují určité bezpečnostní nadhodnocení, a proto by byly vypočtené látkové odnoby příliš vysoké.

Pro výpočet látkových odnosek u bodového vypouštěného znečišťení ze staré důlní činnosti byly použity naměřené hodnoty koncentrací a velikost průtoků z programů měření spolkových zemí.

Prověření významnosti se u vybraných znečišťujících látkek provádělo na základě porovnání odhadů odnosů emisí s látkovými odnoby v toku. Látkové odnoby v toku byly vypočteny podle metody 1.1a **(příloha A2-1)**. Pro kvantifikaci podílu bodových zdrojů na zatížení vodních toků byl vypočet procentuální podíl emisních odnosů na látkovém odnosu v hodnoceném referenčním profilu. Výsledky jsou zdokumentovány u příslušných správčů dal **(příloha A2-1)**.

A2-10 INVENTARIZACE STARÝCH EKLOGICKÝCH ZÁTĚŽÍ NA TOKU, VÝZNAMNÝCH PRO JAKOST SEDIMENTŮ

1. Odůvodnění

Břehy Labe a jeho přítoků Labe a jeho přítoků se už dlouho intenzivně využívají jako města pro průmyslové účely. Vodní toky přístem často sloužily k získávání užitkové vody a k vypouštění odpadních vod. Často se přístem kolem toků nebo v tocích likvidovaly také vyprodukováns odpady. Na tyto plochy byla vypouštěna a ukládána významná část znečišťujících látke, které se až do dnešní doby vyskytují ve vodě i v sedimentech labského systému. Způsoby využívání se v průběhu let měnily, v řadě podniků byla zejména po roce 1990 natvrlo zastavena výrobní činnost. V závislosti na předchozím využití zůstaly na těchto plochách, které jsou dnes označovány jako kontaminovaná místa, stará úložiště / staré skládky nebo stará těžba, kontaminované půdy a úložiště odpadů. Tyto staré ekologické zátěže, resp. lokality s podezřením na staré ekologické zátěže jsou v kontextu koncepce pro nakládání se sedimenty dále označovány jednotně jako staré ekologické zátěže na toku. Podle můry kontaminace mohou být tyto plochy, zejména pod kud se nacházejí v blízkosti vodních toků, případným zdrojem znečišťujících látek relevantních pro sedimenty v systému Labe. **Tabulka T-A2-10-1** ukazuje, pro které znečišťující látky relevantní pro Labe v kontextu nakládání se sedimenty případně v úvahu potenciální zdroje znečišťení podle jednotlivých odvětví.
Tab. T-A2-10-1: Průmyslová odvětví a typické znečišťující látky

<table>
<thead>
<tr>
<th>Č.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Látka</td>
<td>Hg</td>
<td>Cd</td>
<td>Pb</td>
<td>Zn</td>
<td>Cu</td>
<td>Ni</td>
<td>As</td>
<td>Cr</td>
<td>α-HCH</td>
<td>β-HCH</td>
<td>γ-HCH</td>
<td>pp'-DDT</td>
<td>pp'-DDE</td>
<td>pp'-DDD</td>
<td>PCB-28</td>
<td>PCB-52</td>
</tr>
<tr>
<td>Jednotka</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>μg/kg</td>
<td>μg/kg</td>
<td>μg/kg</td>
<td>μg/kg</td>
<td>μg/kg</td>
<td>μg/kg</td>
<td>μg/kg</td>
<td></td>
</tr>
<tr>
<td>Dohromadná hodnota</td>
<td>0,15</td>
<td>0,22</td>
<td>25</td>
<td>200</td>
<td>14</td>
<td>-</td>
<td>7,9</td>
<td>26</td>
<td>0,5</td>
<td>-</td>
<td>0,5</td>
<td>1</td>
<td>0,31</td>
<td>0,06</td>
<td>0,04</td>
<td>0,1</td>
</tr>
<tr>
<td>Horní prahová hodnota</td>
<td>0,47</td>
<td>2,3</td>
<td>53</td>
<td>800</td>
<td>160</td>
<td>3</td>
<td>40</td>
<td>640</td>
<td>1,5</td>
<td>5</td>
<td>1,5</td>
<td>3</td>
<td>6,8</td>
<td>3,2</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

- **Chemický průmysl**
- **Výroba barev a laků**
- **Podniky na zpracování rudy**
- **Kovohüt, slitvárny**
- **Galvanovny**
- **Strojírenství**
- **Loděnice**
- **Výroba elektrické energie**
- **Plynárny a koksového**
- **Sklady pohonných hmot**
- **Provozovny na impregnaci dřeva**
- **Koželužny, jírčárně**
- **Využití odpadů (sběrné šrotu, úprava šrotu)**
- **Staré závěsy vojenských a zbrojních objektů**
- **Zpracování textilu**
- **Papíry a celulózy**
- **Skládky stavebního sulí**
- **Skládky komunálního odpadu**
- **Skládky závadných látek / hrdá zůstatkového materiálu**

Typická znečišťující látky, hlavní kontaminant
Typická znečišťující látky, nevysoky se vdsede
Typická znečišťující látky, zpravidla sekundárního významu
<table>
<thead>
<tr>
<th>Č.</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Látka</td>
<td>PCB-101</td>
<td>PCB-118</td>
<td>PCB-138</td>
<td>PCB-153</td>
<td>PCB-180</td>
<td>PeCB</td>
<td>HCB</td>
<td>BaP</td>
<td>Anthracen</td>
<td>Fluor-anthen</td>
<td>Σ 5 PAU</td>
<td>TBT</td>
<td>Dioxinyl furany</td>
</tr>
<tr>
<td>Jednotka</td>
<td>µg/kg</td>
<td>ng TEE/kg</td>
</tr>
<tr>
<td>Dolní prahová hodnota</td>
<td>0,54</td>
<td>0,43</td>
<td>1</td>
<td>1,5</td>
<td>0,44</td>
<td>1</td>
<td>0,0004</td>
<td>0,01</td>
<td>0,03</td>
<td>-</td>
<td>0,6</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Horní prahová hodnota</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>400</td>
<td>17</td>
<td>0,6</td>
<td>0,31</td>
<td>0,18</td>
<td>2,5</td>
<td>0,02</td>
<td>20</td>
</tr>
</tbody>
</table>

Chemický průmysl

Výroba barev a laků

Podniky na zpracování rudy

Kovohutě, slévárny

Galvanovny

Strojírenství

Loděnice

Výroba elektrické energie

Plyňárny a koksárny

Provozovny na impregnaci dřeva

Koželužny, jichárny

Využití odpadů (sběrny šrotu, úprava šrotu)

Staré záložky vojenských a zbrojnich objektů

Zpracování textilu

Papíry a celulózy

Skládky stavební suti

Skládky komunálního odpadu

Skládky závadných látek / halářů zustatkového materiálu

Typická znečišťující látky, hlavní kontaminant

Typická znečišťující látky, nestupeuje se vůle

Typická znečišťující látky, zpravidla sekundárního významu
2. Postup v české části povodí

I. Metodické pokyny
1. Metodický pokyn MŽP: (Indikátor znečištění)
3. Metodický pokyn MŽP pro průzkum kontaminovaného území, Věstník MŽP č. 9, září 2005
5. Metodický pokyn MŽP: Zásady zpracování studie proveditelnosti opatření pro nápravu závadného stavu kontaminovaných lokalit, červen 2007
6. Metodický pokyn MŽP k řešení problematyky stanovení indikátoru možného znečištění ropnými látkami při sanacích kontaminovaných míst, Věstník MŽP č. 3, březen 2008
7. Metodický pokyn MŽP k plnění databáze SEKM včetně hodnocení priorit, Věstník MŽP č. 3, březen 2011

II. Metodické příručky
1. Metodická příručka hodnocení průzkumu a sanací
2. Metodická příručka ISCO – Aktualizace 2010
3. Metodická příručka MŽP – Aplikace geofyzikálních metod při ochraně vodních zdrojů, 2010
4. Metodická příručka MŽP – Základní principy hydrogeologie, 2010
5. Metodická příručka MŽP – Možnosti geofyzikálních metod, 2009
6. Metodická příručka MŽP pro použití redukčních technologií in situ při sanaci kontaminovaných míst, 2007

III. Ostatní
1. Směrnice FNM ČR a MŽP č. 3/2004
2. Platnost a využitelnost metodického pokynu MŽP
3. Postup v německé části povodí Labe (FGG Elbe 2014)

Lokality, připadající v úvalu, jsou pro celé povodí Labe evidovány v katastrech starých ekologických zátěží jednotlivých spolkových zemí. Od roku 1990 bylo vynaloženo velké úsilí na odstranění starých ekologických zátěží. V souladu s předmětem ochrany a účely využití se opatření soustředila hlavně na odstraňování kontaminací půd a ochranu podzemních vod. Spolková vláda i zemské vlády poskytla na průzkum a odstranění starých ekologických zátěží rozsáhlé prostředky. Jako příklad se zde dá uvést osvozeni od nákladů na sanaci starých ekologických zátěží podle článku 1 § 4 odst. 3 rámového zákona o životním prostředí (UmwRG)6. Tímto finančním nástrojem na odstraňování starých ekologických zátěží byla poskytnuta významná podpora pro ekonomický rozvoj řady starých průmyslových podniků. Lokality s mimorádným ekologickým a ekonomickým významem byly v tomto smyslu speciálně podporovány a rozvíjeny formou tzv. velkých projektů. Kromě toho financovaly spolkové země z vlastních rozpočtů řadu dalších projektů zabývajících se řešením starých ekologických zátěží.

Kontaminace sedimentů v povrchových vodách v důsledku starých ekologických zátěží nebyly v rámci řešení problamaticky starých ekologických zátěží po- suzovány vůbec nebo jen částečně. Prostřednictvím inventarizace starých ekologických zátěží na toku, které jsou relevantní pro jakost sedimentů, by se měl pro Labe a jeho relevantní přítrhky získať přehled o stávajících starých ekologických zátěžích na toku a o rizikovém potenciálu, který tyto zátěže pro vodní toky představují. Měly by být identifikovány stávající požadavky na další postup.

Metodický postup je určován velkým počtem ploch s podezřením na staré ekologické zátěže a odbornou složitostí této problematiky. Proto zpracování probíhá formalizovaným postupem na základě odborných vědomostí. Z legislativy byl uplatněn spolkový zákon o ochraně půdy7, spolková vyhláška o ochraně půdy a rovněž zákony o ochraně půdy jednotlivých spolkových zemí. Jako datové podklady byly využity:

- informační systémy spolkových zemí o starých ekologických zátěžích
- informační systémy spolkových zemí o půdě
- archivy zemských báňských úřadů.

Rámové požadavky na prověření relevantnosti starých ekologických zátěží na toku pro nakládání se sedimenty v rámci FGG Elbe

Lokality se starými ekologickými zátěžemi, resp. lokality s podezřením na staré ekologické zátěže jsou v kontextu Koncepce MKOL pro nakládání se sedimenty a podle mandátu ad hoc pracovní skupiny SSedM FGG Elbe relevantní pro nakládání se sedimenty v německé části povodí v těchto případech:

- na této ploše byla zjištěna znečišťující látka relevantní pro sedimenty v relevantním množství pro Labe
- toto látkové znečištění může způsobit přímé nebo nepřímé ohrožení povrchových vod, např. v důsledku o přímého vnosu vylučovatelných znečišťujících látek srážkovými vodami, o přemístění znečišťujících látek přes podzemní vody a o odpovědnosti ekologických kontaminovaných materiálů, zejména při povodních
- emise znečišťujících látek z této plochy vedle ke vzniku uložení kontaminovaných sedimentů ve vodním toku, které mohou aktuálně působit jako potenciální zdroje znečištění pro systém Labe.

Kontrolní kroky

Vybír starých ekologických zátěží a lokalit s podezřením na staré ekologické zátěže, které jsou relevantní pro nakládání se sedimenty v FGG Elbe, probíhá metodou třístupňové kontroly a hodnocení:

1. identifikace lokalit s podezřením na staré zátěže relevantních pro nakládání se sedimenty v FGG Elbe na základě stanovených výběrových kritérií (kontrolní krok 1)
2. zjištění aktuálního stavu relevantních lokalit s podezřením na staré zátěže a stavu znalosti o situaci se starými ekologickými zátěžemi (kontrolní krok 2)
3. vypracování návrhů na nezbytná opatření průzkumu ke stanovení skutečného potenciálu ohrožení nebo doporučených opatření k jeho odstranění (kontrolní krok 3)

7 Zákon o ochraně před škodlivými změnami půdy a o sanaci starých ekologických zátěží (BBlbSchG) ze dne 17. března 1998 / Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten (Bundes-Bodenschutzgesetz - BBlbSchG) vom 17.03.1998
8 Spolková vyhláška o ochraně půdy a starých ekologických zátěžích (BBlbSchG) ze dne 12. července 1999 / Bundes-Bodenschutz- und Altlastenverordnung (BBlbSchG) vom 12.07.1999
Kontrolní krok 1:

Výběr starých ekologických zátěží na toku relevantních pro sedimenty

Prověření významností (kontrolní krok 1) probíhá na základě odborných vědomostí. Stará úložiště, resp. staré skládky (lokality s podezřením na staré ekologické zátěže – typ „AA“, tj. stará úložiště / staré skládky) je třeba zohlednit tehy, pokud jsou evidovány v katastru starých ekologických zátěží příslušné spolkové země. Na základě očekávaného velkého počtu je třeba zahrnout kontaminovaná místa typu „AS“ jen tehdy, pokud jsou tyto lokality nebo jejich dílčí plochy registrovány v katastech starých ekologických zátěží jako aktivní. Lokality provozoven, které nejsou registrovány jako staré ekologické zátěže, nejsou v této fázi zohledněny. Plochy s podezřením na staré zátěže typu „těžba“ je třeba vzhledem k jejich očekávaně významnosti zohlednit nezávisle na současném stavu / využití (ukončená těžba nebo ještě v provozu).

Kritéria pro identifikaci starých ekologických zátěží na toku relevantních pro sedimenty:

a) dotčenost relevantního vodního toku

b) výskyt znečišťujících látek relevantních pro sedimenty

c) znečišťující látky se vyskytují v množství relevantním pro Labe

d) mobilizovatelnost znečišťujících látek

mírnosti transportu znečišťujících látek do vodního toku

1) migrace do vodního toku pod vlivem gravitačních sil nebo prostřednictvím průsakových / podzemních vod

d2) eroze materiálu při extrémních situacích

d3) lokální úložiště znečišťujících látek v sedimentech vodního toku

Ad a) Dotčenost relevantního vodního toku (hlavní kritérium)

- Posuzovány jsou pouze relevantní vodní toky (hlavní tok Labe a přítoky kategorie 1, 2a, 2b).

- Kontrolním kritériem je vzdálenost lokality se starými ekologickými zátěžemi od vodního toku.

- Stanovení koridorů (3 varianty)

 Varianta 1: plocha se nachází v záplavovém území (preferenční varianta)

 Varianta 2: plocha leží uvnitř definovaného distančního koridoru9 mezi břehy vodního toku (cára průměrných průtoků) + (100/200/300) m

 Varianta 3: plocha se nachází v koridoru podle vrstvenice (základ topografická mapa 1 : 10 000, oblast od břehu vodního toku (čára průměrných průtoků = výškový stupeň n) až po vrstvenici n + 5 m)

Výsledek kontrolního kroku 1a je mapová znázornění všech ploch starých ekologických zátěží, nacházejících se v interakční oblasti relevantních vodních toků.

Ad b) Výskyt znečišťujících látek relevantních pro sedimenty

U všech ploch zjištěných v kroku 1a) je třeba prověřit, zda se zde mohou vyskytovat znečišťující látky relevantní pro sedimenty.

Pro sjednocení hodnocení a porovnatelnost výsledků ze spolkových zemí se provádí rešerše na základě harmonizovaného přehledu průmyslových odvětví a znečišťujících látek podle tabulky T-A2-10-1. Při prověřování významnosti látek na starých úložištích jsou rozlišovány dva případy:

- a) Skládky závadných látek jsou zohledňovány per se.

- b) Skládky komunálního odpadu s heterogenním skládkovým materiálem, který se zpravidla nedá kompletně popsat co do druhu a množství, jsou posuzovány od objemu >100 000 m³ skládky.

Paleta znečišťujících látek ze starých kontaminovaných míst je hodnocena podle uvedených průmyslových odvětví a znečišťujících látek.

Výsledek kontrolního kroku 1b:

Výsledky hodnocení nejsou znázorněny explicitně, nýbrž se promítají do kontrolního kroku 1d.

Ad c) Výskyt znečišťujících látek v množství relevantním pro Labe

Dohoda o významnosti množství: Daný zdroj je relevantní, pokud zjištěný potenciál odnosů znečišťující látky dosahuje minimálně 10 % (3 % na hlavním toku Labe) ročního odnosu znečišťující látky naměřeného na příslušném referenčním profilu v roce 2005.

- Úložiště látek

 - Skládky zeminy a stejnéhous sú jsou zpravidla považovány za nevýznamné.

 - Skládky komunálního odpadu jsou relevantní při objemu skládkovaného materiálu ≥100 000 m³.

 - Skládky závadných látek / hadly zůstatkového materiálu je třeba posuzovat vždy (jednotlivé případy).

- Výsypky po težbě nerostných surovin

 Objevují výsypky po težbě nerostných surovin jsou většinou známé nebo je lze odhadnout.
Jako relevantní znečišťující látky by měly v po-
vodi Labe připadat v úvahu pouze těžké kovy.
Informace o koncentracích typických těžkých
kovů v tělescech výskytek by se měly dáti zji-
tít u báňských úřadů, důlních podniků nebo
sanačních společností.

- Kontaminovaná místa
 - Bez významu jsou zpravidla lokality, kde se
jednoznačně manipulovalo s ekologicky závad-
 nými látkami jen ve velmi malém rozsahu (např.
 truhlářství, tiskárny, autodílny).
 - Významné množství znečišťujících látek lze
apř. očekávat u bývalých skladů pohoných
hmot, chemických podniků, plynáren a koksáren,
podniků na zpracování rud, kovohutí, galvan-
 ovin a provozu na impregnační dřeva.
 - Využití výsledků ze sanačních nebo detailních
 průzkumů na výpočet stávajícího potenciálu látko-
 vých odnosů.
 - Analogické posouzení na základě poznatků zís-
 kaných v jiných lokalitách pro odhad množství
 znečišťujících látek (např. u plynáren).

Výsledek kontrolního kroku 1c:
Výsledky hodnocení jsou značně omezeny explicitně,
nýbrž jsou zahrnuty do kontrolního kroku 1d.

Ad d) Mobilizovatelnost znečišťujících látek
Posuzovány jsou tři scénáře:

d1) Vyuhozování / eluce (uvolňování a transport
znečišťujících látek např. přes průsakové nebo
podzemní vody)
 - Znečišťující látky samy o sobě nebo materiály s ob-
sahem znečišťujících látek jsou bez zabezpečení
vystaveny atmosférickým srážkám.
 - Kontaminace se týká nasyceného půdního pás-
 ma.

d2) Eroze (odnos materiálu při povodních)
 - Areál je v případě povodně zaplaven.
 - Chybějící stabilita svahů.

d3) Staré sedimety ve vodním toku
V důsledku dřívějších emisi znečišťujících látek
(např. vypouštění odpadních vod během období
provozu) se mohou směrem po toku nacházet
kontaminované říční sedimety jako stará ekolo-
 gická zátěž a může docházet k jejich mobilizaci.

Výsledek kontrolního kroku 1d:
Mapové znázornění ploch starých ekologických
zátěží, které se nacházejí na relevantních vodních
tocích a kde se pravděpodobně ve významném
množství nacházejí mobilizovatelné znečišťující látky
relevantní pro sedimenty.

Pracovní výsledky kontrolního kroku 1:
Znázornění ploch starých ekologických zátěží
potenciálně relevantních pro sedimenty, obsahující
výpovědi k níže uvedeným aspektům:

- Aktuální situace
 Kde se vyskytují mobilizovatelné znečišťující látky
 (eluce / eroze) v množství relevantním pro Labe?

- Historická situace
 Mohly se během období provozu starého podniku
 (kontaminovaného místa) dostat do vodního toku
znečišťující látky přes odpadní vody, v důsledku
neodborné likvidace odpadů nebo při havariích
 a mohou zde být uloženy do dnešní doby vázané na
 sedimenty v říčním korytě, v příbřežní zóně nebo
 v údolních nivách?
 Jaké poznatky existují k této problematice?

Pracovní výstupy:

- Mapová znázornění ke kontrolnímu kroku 1a a
 kontrolnímu kroku 1d
- Tabulkový popis předchozího využívání, kontami-
nace znečišťujícími látkami (látka a množství), pro-
 vedených zabezpečovacích a sanačních upravení
 a popis aktuálního stavu pro vybrané objekty se
 zvýšenou relevancí pro nakládání se sedimenty
 podle tabulky T-A2-10-2.

V hodnocení výsledků rešeršete pomocí:
 - vysvětlení významu „starých ekologických zátěží
 na toku“ pro nakládání se sedimenty jako zdroje
 znečišťení
 - popis současného stavu
 - ohad nutnosti dalších kroků
 - vypracování doporučených postupů
 - ohad nejistot

V rámci Koncepcie FGG Elbe pro nakládání se se-
dimenty (2014) byly pro významné případy starých
 ekologických zátěží s potenciální relevancí pro naklá-
 dání se sedimenty zpracováván standardizovaný dotaz-
 ník („katalogový list“), který byl aplikován na lokality
s mírořádným významem, zpracila velké ekolo-
gické projekty.

Kontrolní krok 2:
Zjištění aktuálního stavu ploch s podezřením na
staré zátěže

Kontrolní krok 2 se provádí na základě odborných
vědomostí, resp. ve spolupráci příslušného úřadu na
ochranu půdy / vodohospodářského orgánu.

Opatření v kontrolním kroku 2:
- Zjištění stavu zpracování a poznatků o staré eko-
<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Vodní tok</th>
<th>Spolková země</th>
<th>Místo / obec</th>
<th>Název lokality s podezřením na SEZ</th>
<th>Využití</th>
<th>Typ</th>
<th>Osa x (střed)</th>
<th>Osa y (střed)</th>
<th>Souřadnicový systém</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>AA</td>
<td>56xxxx</td>
<td>45xxxx</td>
<td>Gauß-Krüger (Bessel)</td>
</tr>
<tr>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>AA</td>
<td>56xxxx</td>
<td>45xxxx</td>
<td>Gauß-Krüger (Bessel)</td>
</tr>
</tbody>
</table>

Tab. T-A2-10-2: Přehled výsledků ke kontrolnímu kroku 1

<table>
<thead>
<tr>
<th>Poloha vůči toku</th>
<th>Zpracování SEZ</th>
<th>Látky relevantní pro sedimenty</th>
<th>Množství znečišťujících látěk</th>
<th>Stav znalostí aspektů managementu sedimentů</th>
</tr>
</thead>
<tbody>
<tr>
<td>Záplavové území není vymezeno, uložitě je chráněno před povodní železničním náspelem (>Q100)</td>
<td>Historické a orientační průzumky, doposud žádná zabezpečovací a sanační opatření</td>
<td>V průsakové vodě prokázány těžké kovy a TBT</td>
<td>Množství znečišťujících látek nelze prozatím kvantifikovat, pravděpodobně však není pro Labe relevantní</td>
<td>jsou k dispozici jsou k dispozici jsou k dispozici jsou k dispozici</td>
</tr>
<tr>
<td>Záplavové území není vymezeno, uložitě je chráněno před povodní železničním náspelem (>Q100)</td>
<td>Historické průzumky, doposud žádná zabezpečovací a sanační opatření</td>
<td>Pravděpodobné těžké kovy, PAU; možný je i TBT a další látky relevantní pro sedimenty</td>
<td>Objem uložitě cca 300 000 m³, proto je potenciální odno- sů těžkých kovů a PAU relevantní pro Labe, potencí- íal odno- sů dalších znečišťujících látek nelze kvantif- kovat</td>
<td>jsou k dispozici jsou k dispozici jsou k dispozici žádná data</td>
</tr>
</tbody>
</table>
Výsledek kontrolního kroku 2:
Seznam lokalit s podezřením na staré zátěže relevantní pro sedimenty

Kontrolní krok 3:
Další postup při řešení staré ekologické zátěže

- Realizovat nezbytné průzkumy vztahující se na jednotlivé případy a popřípadě koncipovat a dát podnět k opatření na odvražení rizika
- Podnět může vzejít např. od příslušného úřadu na ochranu půdy nebo vodohospodářského orgánu.

Tab. A2-10-2: Přehled výsledků ke kontrolnímu kroku 1 (pokračování)

<table>
<thead>
<tr>
<th>Ence</th>
<th>Možnost mobilizace lodi a cesty se sili</th>
<th>Prozkum pozemní vody v oblasti odkou</th>
<th>Prozkum pozemní vody v oblasti odkou</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ence</td>
<td>MOŽNOST MOBILIZACE LODI A CESTY SE SILI</td>
<td>PROZKUM POZEMNÍ VODY V OBlasti Odkou</td>
<td>PROZKUM POZEMNÍ VODY V OBlasti Odkou</td>
</tr>
</tbody>
</table>

10 Tato opatření mohou být nezbytná a účinná již v kontrolním kroku 1. Samostatný kontrolní krok 2 by pak případně nebyl nutný.
Měrné profily
Ke znázornění látkových odnósů v podélném profilu Labe se používají referenční profily uvedené v příloze A2-1.

Datová základna / metodika výpočtu / výpočetní program
- Datovou základnu tvoří vypočtené odnoby znečišťujících látok pro vodnou fázi celkem (těžké kovy a arsen) a pro partikulárně vázané organické látky podle tabulky T-A4-2 v příloze A4.
- Látkové odnoby v podélném profilu Labe jsou znázorněny pro všechny relevantní znečišťující látky v kontextu koncepce pro nakládání se sedimenty za využití nejlepší dostupné datové základny za období 2003 – 2011.
- Pro znázornění odnósů těžkých kovů a arsenu v podélném profilu Labe jsou použity látkové odnoby ve vodné fázi celkem. Výpočty byly provedeny podle metody 1.1a.
- Podélné profily Labe u organických látek vyhájí z výpočtů látkových odnósů příslušných partikulárně vázaných znečišťujících látek podle metody 2.1.1b.
- V přehledu „Metodika výpočtu ročních odnósů znečišťujících látek na referenčních profilích v rámci managementu sedimentů“ jsou uvedeny a popsány všechny metody výpočtu, včetně aplikovaných metod podle kódovacích čísel.

Znázornění výsledků
- Znázornění látkových odnósů v podélném profilu Labe v mezinárodní oblasti povodí se provádí formou sloupových diagramů. Na ose x jsou zaneseny referenční profile Labe a jejich přítoků kategorie 1, počínaje českou částí povodí směrem k ústí Labe. Rozestupy mezi referenčními profily odpovídají říční kilometrů. V grafu jsou vyznačeny hlavní úseky toku Labe: (1) regulovaný úsek, (2) volně tekoucí úsek a (3) slapový úsek. Nad polohou měrných profilů jsou formou sloupů znázorněny látkové odnoby odtokově průměrného roku 2005.

- U jednotlivých měrných profilů nejsou k dispozici výsledky analyz pro všechny sledované látky, resp. u některých látek jsou menší než příslušné meze stanovitelnosti pro výpočet látkových odnósů. V takových případech pak sloupce v graf- fech podélných profilů Labe chybějí.

Metodika výpočtu ročních odnósů znečišťujících látek na referenčních profilích v rámci managementu sedimentů
1. Pro všechny referenční profily na základě veškerého obsahu ve vodné fázi
1.1a) Roční odnos znečišťujících látek (celkový) pro ověření / výběr přítoků
\[
F = \frac{\sum_{i=1}^{n} (C_i \cdot Q_i)}{\sum_{i=1}^{n} (Q_i)} \cdot 0,0864 \cdot 365,25
\]
1.1a) _EP_ při používání prostých vzorků
1.1a) _WMP_ při používání týdenních směsných vzorků
1.1b) Roční odnos znečišťujících látek (celkový) pro tendenci / hodnocení účinnosti opatření (normováno)
1.1b) _EP_ při používání prostých vzorků
1.1b) _WMP_ při používání týdenních směsných vzorků

1.2) Pro bilanční měrné profily na Labi a měrné profily na soutoku hlavních přítoků s Labem (Hřensko / Schmilka, Schnackenburg, See mannhöft, Mulde/Dessau, Sála/Rosenburg) se k ověření hodnověrnosti výpočtů podle bodu 1.1 navíc vypočítává součet odnós látek v rozpuštěné fázi a látek partikulárně vázaných:
1.2a) Roční odnos znečišťujících látek (rozpuštěná fáze) pro ověření / výběr přítoků
\[
F = \frac{\sum_{i=1}^{n} (C_{i\text{(nap)}} \cdot Q_i)}{\sum_{i=1}^{n} (Q_i)} \cdot 0,0864 \cdot 365,25
\]
1.2b) Roční odnos znečišťujících látek (rozpuštěná fáze) pro tendenci / hodnocení účinnosti opatření (normováno)

\[F_t = \frac{Q \sum_{i=1}^{n} (C_i(\text{nap}) \cdot Q_i)}{\sum_{i=1}^{n} (Q_i)} = 0,0864 \cdot 365,25 \]

1.2c) Roční odnos znečišťujících látek (partikulárně vázaných) pro ověření / výběr přítoků (viz 2.1.1a), resp. 2.1.1b)

1.2d) Roční odnos znečišťujících látek (partikulárně vázaných) pro tendenci / hodnocení účinnosti opatření (normováno), viz 2.2.2a), resp. 2.2.2b)

1.2e) Roční odnose znečišťujících látek (součet odnoseů látek v rozpuštěné fázi a látek partikulárně vázaných) pro ověření / výběr přítoků

1.2.1a) Součet látkových odnose podle metody 1.2a) a 2.1.1a)

rozpuštěná fáze + partikulárně vázané látky (sřední nádrž plavení, s nerozpustěnými látkami)

1.2.1b) Součet látkových odnose podle metody 1.2a) a 2.1.1b)

rozpuštěná fáze + partikulárně vázané látky (odstředivka, s nerozpustěnými látkami)

1.2.1c) Součet látkových odnose podle metody 1.2a) a 2.1.1c)

rozpuštěná fáze + partikulárně vázané látky (odstředivka, s odměřením plavení za referenční období)

1.2f) Tendence / hodnocení účinnosti opatření (normováno), (součet odnoseů látek v rozpuštěné fázi a látek partikulárně vázaných)

1.2.1d) Součet látkových odnose podle metody 1.2b) a 2.2.2a)

rozpuštěná fáze (trend) + partikulárně vázané látky (trend / sřední nádrž plavení)

1.2.2a) Součet látkových odnose podle metody 1.2b) a 2.2.2a)

rozpuštěná fáze (trend) + partikulárně vázané látky (trend / odsředivka)

2.1b) Pro výpočet odnose plavenin je k dispozici pouze jedna hodnota za měsíc pro nerozpustěné látky z prostrého vzniku vody.

\[F = \frac{n}{\sum_{i=1}^{n} (Q_i)} \]

kde \(S_i = \text{odnose plavenin za den} \)

(součin koncentrace nerozpustěných látek v den odběru pro měření měsíčního průřezu vody, vynášený počtem sekund za den)

2.1b) Pro výpočet odnose plavenin jsou k dispoziči měření koncentrace plavenin s vysokým časovým rozlišením (např. měření Vodní a plavební správy / Splavoxové ústav hydrologického v pracovní dny s filtrace a nebo měření záznamu, v ČR měření ČHMÚ v denní kroku).

Pro vzorkovací období měních stanic jakosti vody (s odběry v měsíčním intervalu) se výpočet odnoseu partikulárně vázaných znečišťujících látek provádí podle následujícího vzorce:

\[F = \sum_{i=1}^{n} C_i(\text{nap}) \cdot SBZR_i \]

2.1.2b) Odběr vzniku pomocí odsředivky

2.1.2a) Pro výpočet odnose plavenin je k dispozici pouze jedna hodnota za měsíc pro nerozpustěné látky z prostrého vzniku vody.

\[F = \frac{\sum_{i=1}^{n} (C_i(\text{nap}) \cdot S_i)}{\sum_{i=1}^{n} (Q_i)} \cdot 365,25 \]

\(Q_{\text{nap}} = \text{průměrný průtok v den / ve dnech odběru} \)

\(S_i = \text{odnose plavenin za den} \)

(součin koncentrace nerozpustěných látek v den odběru pro měření měsíčního průřezu vody a průměrného průřezu v den odběru, vynášený počtem sekund za den)
\[S_i = Q_{den} \cdot C_{i(0)} \cdot 0.08640 \]

\[C_{i(0)} = \text{průměrná koncentrace plavenin za vzorkovací období} \]

Pokud nejsou k dispozici hodnoty pro každý měsíc, měl by být z měsíčních období, pro něž byly látkové odnory vypočteny, vytvořen průměr, který se pak vynásobí 12 s tím, že výsledek představuje odhad ročního odnose znečišťujících látek.

2.2.1b) Pro výpočet odnose plavenin jsou k dispozici měření koncentrace plavenin s vysokým časovým rozlišením (např. měření Vodní a plavební správy / Spolkového ústavu hydrologického v pracovní dny s filtrací a/ nebo měření zákalu, v ČR měření ČHMÚ v denním kroku).

Pro vzorkovací cykly (s odběry s přibližně čtvrtletní četností v České republice a s měsíční četností v Německu) by se měl výpočet odnose podstatně vázaných znečišťujících látek provádět podle následujícího vzorce:

\[F = \sum_{i=1}^{n} C_{i(0)} \cdot SBZR_i \]

SBZR = součet odnose plavenin za určité období, kteří se vytvoří následovně:

Počáteční datum: průměrné datum mezi vžr- kem předtím a vlastním vzorkem
Konečné datum: průměrné datum mezi vlastním vzorkem a následujícím vzorkem

Výjimka č. 1: Je-li v tomto období přelom roku, pak je počátkem nebo koncem vzorkovacího období přelom roku.

Výjimka č. 2: U prvního vzorku kampaně je počet dní mezi počátečním datem a vlastním da- tem odběru vzorku stejný jako mezi vlastním datem odběru vzorku a konečním datem (průměrné datum mezi vlastním odběrem vzorku a následujícím vzorkem), u posledního vzorku kampaně se konečné datum vytvoří obdobným způsobem, ovšem pomocí období před odběrem.

2.2 Roční odnose znečišťujících látek (partikulárně vázaných) pro tendencí / hodnocení účinnosti opatření (normováno)

2.2.1 Pořizování vzorků pomocí nádrží plavenin / sedimentačních schránků po dobu jednoho měsíce

2.2.1a) Pro výpočet odnose plavenin je k dispozici pouze jedna hodnota za měsíc pro neroz- puštěné látky z prostého vzorku vody

\[F = \frac{Q \sum_{i=1}^{n} C_{i(0)} \cdot S_i \cdot t_{měsíců}}} {Q_{měsíců}} \]

2.2.1b) Pro výpočet odnose plavenin jsou k dispozi- ci měření koncentrace plavenin s vysokým časovým rozlišením (např. měření Vodní a plavební správy / Spolkového ústavu hydrologického v pracovní dny s filtrací a/ nebo měření zákalu, v ČR měření ČHMÚ v denním kroku).

Pro vzorkovací období měřicích stanic jakostí vody (s odběry s měsíční četností) se výpočet odnose podstatně vázaných znečišťujících látek provádí podle následujícího vzorce:

\[F = \frac{Q \cdot \sum_{i=1}^{n} C_{i(0)} \cdot SBZR_i} {Q_{měsíců}} \]

2.2.2 Odběr vzorků pomocí odstředivky

2.2.2a) Pro výpočet odnose plavenin je k dispozici pouze jedna hodnota za měsíc pro neroz- puštěné látky z prostého vzorku vody.

\[F = \frac{Q \cdot \sum_{i=1}^{n} C_{i(0)} \cdot S_i} {Q_{měsíců}} \cdot 365,25 \]

2.2.2b) Pro výpočet odnose plavenin jsou k dispozici měření koncentrace plavenin s vysokým časovým rozlišením (např. měření Vodní a plavební správy / Spolkového ústavu hydrologického v pracovní dny s filtrací a/ nebo měření zákalu, v ČR měření ČHMÚ v denním kroku).

Pro vzorkovací období měřicích stanic jakostí vody (s odběry s přibližně čtvrtletní četností v České republice a s měsíční četností v Německu) se výpočet odnose podstatně vázaných znečišťujících látek provádí podle následujícího vzorce:

\[F = \frac{Q \cdot \sum_{i=1}^{n} C_{i(0)} \cdot SBZR_i} {Q_{měsíců}} \]
Hodnoty pod mezi stanovitelnosti se do výpočtu ročního odnosu znečišťujících látek započítávají poloviční hodnotou dané meze stanovitelnosti. Pro výpočet ročního odnosu znečišťujících látek (F) se výsledek porovná s látkovým odnosem na mezi stanovitelnosti (F_{MS}).

\[F_{MS} = MS \cdot Q_{Vr} \cdot 0.0864 \cdot 365,25 \]

Je-li vypočtený látkový odnos menší než látkový odnos na mezi stanovitelnosti, pak je nutné uvádět namístě hodnoty látkového odnose pouze označení – menší než látkový odnos na mezi stanovitelnosti. Je-li hodnota F < F_{MS}, pak se výsledek udává jako „< F_{MS}“.

F_{MS} Vzorec se vztahuje pouze k mezím stanovitelnosti, které jsou k dispozici v mg/l. Pokud jsou výsledky koncentrací v mg/kg nebo μg/kg, pak je třeba do výpočtu zahrnout i průměrné roční koncentrace plavení C_{(mg/l)}.

Všeobecně platí všechny vzorce pouze pro určité údaje koncentrací (mg/kg), a proto je činitel 0,0864 správný rovněž pouze pro tyto určité koncentrace.

F	roční odnos znečišťujících látek	[t/rok]
F_r	roční odnos znečišťujících látek pro hodnocení tendence	[t/rok]
n	počet měření	
C_i	koncentrace znečišťujících látek (veškeré obsahy ve vodné fázi)	[mg/l]
C_{(mg/l)}	koncentrace znečišťujících látek (obsahy rozpuštěné ve vodné fázi)	[mg/l]
C_{(mg/l)}	koncentrace nerozpuštěných látek	[mg/l]
C_{(mg/kg)}	koncentrace znečišťujících látek z nádrž plavenin / sedimentačních schránek (shromažďovaných po dobu jednoho měsíce)	[mg/kg]
C_{(mg/kg)}	koncentrace znečišťujících látek na základě stanovení odstředěného vzorku	[mg/kg]
Q_i	průtok (denní průměrný průtok v den odběru vzorku nebo průměr odpovídající době odběru vzorku)	[m³/s]
Q_{(mg/l)}	součet průtoků ve dnech odběru vzorků (součet průměrného denního průtoku v den odběru vzorku nebo průměrná hodnota za dobu trvání odběru vzorku)	[m³/s]
Q_{(mg/kg)}	průměrný roční průtok za kalendářní rok	[m³/s]
Q_{(mg/kg)}	průměrný měsíční průtok	[m³/s]
Q_{(mg/kg)}	průměrný roční průtok pro daný den, vypočtený ze všech měření během dne	[m³/s]
Q_{(mg/kg)}	průměrný dlouhodobý roční průtok	[m³/s]
S_i	odnos plavenin za den	[t/den]
S_{(mg/kg)}	odnos plavenin za vzorkovací období (BZR – počet dní je variabilní)	[t/období]
tměsíč	počet dní za měsíc	
F_{MS}	roční odnos znečišťujících látek na mezi stanovitelnosti	[t/rok]
MS	mez stanovitelnosti	[mg/l]

A2-12 BILANCE LÁTKOVÝCH ODNOSEU

Bilancování látkových odnosů pro vnitrozemský úsek Labe je založeno na uceleném povodí a na nadregionálním přístupu pro všechny dostupné znečišťující látky relevantní pro Labe v kontextu managemen- tu sedimentů a bilancování ve smyslu popisu systémů. Provádí se na základě naměřených odnosů v referenčních profilích a na základě vnosů z bodových zdrojů (odpadní vody a důlní vody z ukončené těžby surovín) s cílem odvodit bilanční veličiny pro české a německé dílčí povodí (poměr sedimentace / remobilizace). Výsledky bilancí se zároveň využívají k odhadu hodnověrnosti výsledků a závěrů z analýz rizik ve vazbě na zdroje, ke specifikaci požadavků pro monitorovací programy ke kontrole úspěšnosti nebo k odhadu nejistot.

Oblast pro bilancování odnosů zahrnuje vnitrozemský úsek Labe od soutoku s Vltavou (kategorie 1) včetně dalších českých přítoků – Ohře (kategorie 1) a Bíliny (kategorie 2a) až po referenční profil Hřensko / Schmilka jakožto vstupní bilanční profil \(F_{nad\ profiлем} \); což odpovídá \(F_{konec} \) pro CZ) o délce 110 km toku a přítoky na německé straně – Triebisch (kategorie 2a), Černý Halštrov (Schwarze Elster), Mulde, Sála a Havola (všechny kategorie 1) až po referenční profil Schnackenburg jakožto druhý vstupní bilanční profil \(F_{pod\ profiлем} \); což odpovídá \(F_{konec} \) pro Německo a Labe celkem - \(F_{konec} \) o délce 490 km toku, tedy úsek toku o celkové délce 600 km.

Na referenčním profilu Hřensko / Schmilka (hraniční profil) má české povodí podíl na povodí / srážkovém území FNCZ = 41 % (tj. CZ : DE = 2 : 3 !) vztáženo na povodí v referenčním profilu Schnackenburg (FN Schnackenburg – vždy 100 %), přičemž díky dílčímu povodí Labe po soutok s Vltavou a přítokům kategorie 1 je zobrazeno povodí o podílu 37,8 % se zanedbatelným podílem mezipovodí 3,2 %. Dfuzní znečištění z plošných zdrojů v České republice je tedy zanedbatelné.

U Německa je pro německou část povodí Labe po profil Schnackenburg včetně zohlednění čtyř přítoků kategorie 1 zobrazen podíl 89,6 % s podílem mezipovodí 10,4 %. Pro celou německou část povodí Labe není tedy v této bilanci zohledněn úsek Schnackenburg – Geesthacht (vnitrozemský úsek Labe) s podílem 7,6 % na celém povodí Labe a slapový úsek Labe po ústi do Severního moře s podílem 10,6 % na ploše povodí. To představuje – vztaženo na bilančovaný podíl po profil Schnackenburg – více než jednu čtvrtinu, a to je třeba zohlednit u analýzy rizik ve vazbě na zdroje ve slapovém úseku Labe.

Výsledky bilance představují rozdíl z odnosu znečišťující látky na konci bilančovaného úseku \(F_{konec} \) a ze sumy vnosů zjištěných nad bilančovaným profilem. konec bilančovaného úseku se pro Českou republiku nachází v profilu Hřensko / Schmilka a pro Německo, resp. pro celý vnitrozemský úsek Labe bez následujícího úseku po Geesthacht v profilu Schnackenburg \(F_{konec} \). Přitom se vychází z předpokladu, že jsou zohledněny všechny významné vnosy. Pokud se výsledky liší od nuly o více než 10 procent, je tato hodnota chápána jako převažující sedimentace nebo jako převažující remobilizace v bilančovaném úseku Labe.

Obecné bilanční rovnice

\[
(1) \Delta F (t/a) = F_{konec} - \Sigma F_{vnosy}
\]
\[
(2) \Delta F (\% FGE) = (F_{konec} - \Sigma F_{vnosy}) / F_{Schnackenburg}
\]

Výsledky bilance

- \(\Delta F < 0 \) převažuje sedimentace
- \(\Delta F = 0 \) indiferentní (± 10 %)
- \(\Delta F > 0 \) převažuje remobilizace
A3 SEZNAM ODBORNÝCH ZPRÁV
A3 SEZNAM ODBORNÝCH ZPRÁV

A3-1 Odborné příspěvky v rámci koncepce pro nakládání se sedimenty

Metodický pokyn NH 2012/02: Odběr vzorků pevných matric a pasivního vzorkování pro chemické analýzy. ČHMÚ, 2012. Interní dokument.

Rámcový program monitoringu. ČHMÚ, 2013.

http://www.mzp.cz/cz/ramcovy_program_monitoringu

Vyhláška 98/2011 Sb., o způsobu hodnocení stavu útvarů povrchových vod, způsobu hodnocení ekologického potenciálu silně ovlivněných a umělých útvarů povrchových vod a nálezitostech programů zjišťování a hodnocení stavu povrchových vod.

A3.2 Další odborné příspěvky s mimořádným významem pro koncepci pro nakládání se sedimenty

K-A4-2: Hydromorfológický stav v povodí Labe – hodnocení průchodnosti pro sedimenty 168
K-A4-3: Hydromorfológický stav v povodí Labe – hodnocení bilance sedimentů (D) / ovlivnění hydrologického režimu (CZ) ... 169
K-A4-4: Hydromorfológický stav v povodí Labe – hodnocení variabilty šířky ... 170
K-A4-5: Hydromorfológický stav v povodí Labe – hodnocení variabilty hloubek .. 171
K-A4-6: Hydromorfológický stav v povodí Labe – hodnocení zrůstového složení dnového substrátu 172
K-A4-7: Hydromorfológický stav v povodí Labe – hodnocení běhové struktury (D) / stability břehu (CZ) ... 173
K-A4-8: Hydromorfológický stav v povodí Labe – hodnocení poměru recentní a morfologické údolní nivy / marše .. 174

K-A4-9.1 Rut v plaveninách ... 175
K-A4-9.2 Kadmiu v plaveninách ... 176
K-A4-9.3 Olovo v plaveninách .. 177
K-A4-9.4 Zinek v plaveninách .. 178
K-A4-9.5 Měď v plaveninách ... 179
K-A4-9.6 Nikl v plaveninách .. 180
K-A4-9.7 Arsen v plaveninách ... 181
K-A4-9.8 Chrom v plaveninách ... 182
K-A4-9.9 α-HCH v plaveninách .. 183
K-A4-9.10 β-HCH v plaveninách (mapa nebyla zpravována) ... 184
K-A4-9.11 γ-HCH v plaveninách .. 185
K-A4-9.12 p,p’-DDT v plaveninách ... 186
K-A4-9.13 p,p’-DDE v plaveninách ... 187
K-A4-9.14 p,p’-DDD v plaveninách ... 188
K-A4-9.15 PCB-28 v plaveninách .. 189
K-A4-9.16 PCB-52 v plaveninách .. 190
K-A4-9.17 PCB-101 v plaveninách .. 191
K-A4-9.18 PCB-118 v plaveninách .. 192
K-A4-9.19 PCB-138 v plaveninách .. 193
K-A4-9.20 PCB-153 v plaveninách .. 194
K-A4-9.21 PCB-180 v plaveninách .. 195
K-A4-9.22 Pentachlorbenzen v plaveninách .. 196
K-A4-9.23 Hexachlorbenzen v plaveninách .. 197
K-A4-9.24 Benzo(a)pyren v plaveninách .. 198
K-A4-9.25 Anthracen v plaveninách .. 199
K-A4-9.26 Fluoranthren v plaveninách (mapa nebyla zpravována) ... 200
K-A4-9.27 Σ 5 PAU v plaveninách ... 201
K-A4-9.28 Tributylicin v plaveninách ... 202
K-A4-9.29 Dioxiny / furany v plaveninách (mapa nebyla zpravována) ... 203
Průměrné koncentrace plavenin v povodí Labe (2003 – 2008)

Legenda
- Grenze der FGE
- Städte
- Staatsgrenzen
- mittl. Konzentration [mg/l]
- Grenzen freiefliehender Elbe

Hydromorphologický stav v povodí Labe – hodnocení průchodnosti pro sedimenty

K-A4-2: Hydromorfologický stav v povodí Labe – hodnocení průchodnosti pro sedimenty
Hydromorphologischer Zustand im Elbegebiet - Bewertung der mittleren Sohlhöhenänderung / Sedimentbilanz (D) / Beeinflussung des Abflussregimes (CZ)

Legende
- Grenze der FGE
- Städte
- Staatgrenzen

Bewertung Sedimentbilanz
- sehr gut
- gut
- mäßig
- unbefriedigend
- schlecht

Hydrologischer Zustand in der Elbe (D) / ovlivnění hydrologického režimu (CZ)

Datenquellen Zdroje údajů
- Karls-Universität Prag / Univerzita Karlova, Praga
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Koblenz
- Behörde für Stadtentwicklung und Umwelt (BSU), Hamburg

K-A4-3: Hydromorphologischer Zustand in der Elbe – hodnocení bilance sedimentů (D) / ovlivnění hydrologického režimu (CZ)

Zentralem in map je omezeno na tok Labe a úseky zajištění přítoků řeky Bělky, Muldy, Sále a Havle (kategorie 1), a to zatíži po první polovině přelivu, a na českém úseku na reprezentování přílivní úseky toku Labe. Základní mámo jsou také výsledkem situace a dosud nezmapovatelných větví a menších přítoků v povodí. Proto tato výsledky nedokázali hodnocení ghledí na otěrkelijním datovém podkladu dosud vypracováno.

Datenquellen Zdroje údajů
- Karls-Universität Prag / Universität Karlsruhe, Praha
- Bundesanstalt für Geowissenschaften (BfG), Koblenz
- Behörde für Blattentwicklung und Umwelt (BSU), Hamburg

K-A4-4: Hydromorphologický stav v povodí Labe – hodnocení variability šířky

Datenquellen Zdroje údajů
- Karls-Universität Prag / Univerzita Karlova, Praha
- Bundesanstalt für Gewässerkunde (BfG), Koblenz
- Behörde für Stadtentwicklung und Umwelt (BSU), Hamburg

K-A4-5: Hydromorphologický stav v povodí Labe – hodnocení variability hloubek
Die Aussagen in der Karte beziehen sich auf den Elbestrom und die Mündungsverbreite jeweils bis zum ersten Querschnittpunkt der Nebenflüsse Schwarzwalder-Eis, Müller, Steine und Havel (Kategorie 1) sowie im tiefsten Teil des Einzugsgebietes auf repräsentative Flutabschnitte des Elbestromes. Die dargestellten Verhältnisse sind aktuelle Resultate der Situation in den bisher nicht erfassten größeren und kleineren Nebengewässern im Einzugsgebiet. Eine Ausarbeitung für diese Gewässer wurde aufgrund fehlender Datengrundlage noch nicht vorgenommen.

Zentralmerkmale in der Karte sind auf den Labe und seine zuläufer Punkt- (Csm) und -Stufe (Stf) aufgezeigt. Das Karte zeigt die wichtigsten Merkmale der Gewässer im Einzugsgebiet, die zu der Bewertung der Gewässer beitragen. Die Karte zeigt die wichtigsten Merkmale der Gewässer im Einzugsgebiet, die zu der Bewertung der Gewässer beitragen.

Datengruben Zdroje údajů
- Karts-Universität Prag / Universitäts-Karlsruhe, Prague
- Bundesanstalt für Gewässerkunde (BfG), Koblenz
- Behörde für Stadtentwicklung und Umwelt (BSU), Hamburg

K-A4-6: Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates
Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates

Legende
- Grenze der FGE
- Stadtgrenze
- Staatsgrenzen
- Bewertung KG
 - sehr gut
 - gut
 - mäßig
 - unbefriedigend
 - schlecht

Hodnocení zrnitostního složení dnového substrátu
- velmi dobře
- dobře
- střední
- poškozený
- zničený

K-A4-6: Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates
Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates

Legende
- Grenze der FGE
- Stadtgrenze
- Staatsgrenze
- Bewertung KG
 - sehr gut
 - gut
 - mäßig
 - unbefriedigend
 - schlecht

Hodnocení zrnitostního složení dnového substrátu
- velmi dobře
- dobře
- střední
- poškozený
- zničený

K-A4-6: Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates
Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates

Legende
- Grenze der FGE
- Stadtgrenze
- Staatsgrenzen
- Bewertung KG
 - sehr gut
 - gut
 - mäßig
 - unbefriedigend
 - schlecht

Hodnocení zrnitostního složení dnového substrátu
- velmi dobře
- dobře
- střední
- poškozený
- zničený

K-A4-6: Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates
Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates

Legende
- Grenze der FGE
- Stadtgrenze
- Staatsgrenzen
- Bewertung KG
 - sehr gut
 - gut
 - mäßig
 - unbefriedigend
 - schlecht

Hodnocení zrnitostního složení dnového substrátu
- velmi dobře
- dobře
- střední
- poškozený
- zničený

K-A4-6: Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates
Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates

Legende
- Grenze der FGE
- Stadtgrenze
- Staatsgrenzen
- Bewertung KG
 - sehr gut
 - gut
 - mäßig
 - unbefriedigend
 - schlecht

Hodnocení zrnitostního složení dnového substrátu
- velmi dobře
- dobře
- střední
- poškozený
- zničený

K-A4-6: Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates
Hydromorphologischer Zustand im Elbegebiet - Bewertung der Krongrößenverteilung des Sohlsubstrates

Legende
- Grenze der FGE
- Stadtgrenze
- Staatsgrenzen
- Bewertung KG
 - sehr gut
 - gut
 - mäßig
 - unbefriedigend
 - schlecht

Hodnocení zrnitostního složení dnového substrátu
- velmi dobře
- dobře
- střední
- poškozený
- zničený
Hydromorphologischer Zustand im Elbegebiet - Bewertung der Uferstruktur (D) / Uferstabilität (CZ)

Hydromorphologisch stabf in povodi Labe - Hodnocení břehové struktury (D) / stability břehu (CZ)

<table>
<thead>
<tr>
<th>Legende</th>
<th>Legend</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grenze der FGE</td>
<td>rozvodnici meznárodní oblasti povodí Labe</td>
<td>města</td>
</tr>
<tr>
<td>Städte</td>
<td>státní hranice</td>
<td></td>
</tr>
<tr>
<td>Staatsgrenzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bewertung Uferstruktur</td>
<td>Hodnocení břehové stability</td>
<td></td>
</tr>
<tr>
<td>sehr gut</td>
<td>velmi dobrý</td>
<td></td>
</tr>
<tr>
<td>gut</td>
<td>dobrot</td>
<td></td>
</tr>
<tr>
<td>mäßig</td>
<td>střední</td>
<td></td>
</tr>
<tr>
<td>unbefriedigend</td>
<td>poškozený</td>
<td></td>
</tr>
<tr>
<td>schlecht</td>
<td>zničený</td>
<td></td>
</tr>
</tbody>
</table>

Die Aussagen in der Karte beschränken sich auf den Ebeneb und die Mündungsgeräte und die Flussschleifen der Neunmütter Schwärme Flößer, Mulde, Saale und Havel (Kategorie 1) sowie im tiefenwasserigen Teil des Einzugsgebiets auf repräsentative Flussabschnitte des Elbstroms. Die dargestellten Verhältnisse sind auch Reaktion der Situation in den bis- her nicht erfassten größeren und kleineren Nebenflüssen im Einzugsgebiet. Eine Ausarbeitung für diese Gewässer wurde aufgrund fehlender Datengrundlage noch nicht vorgenommen.

Datumquellen Zdroje údajů
- Karls-Universität Prag / Univerzita Karlova, Praha
- Bundesanstalt für Gewässerkunde (BfG), Koblenz
- Behörde für Stadtentwicklung und Umwelt (BSU), Hamburg

K-A4-7: Hydromorphologischer Zustand im Elbegebiet - Bewertung der Uferstruktur (D) / Uferstabilität (CZ)
Hydromorphologischer Zustand im Elbegebiet - Bewertung Verhältnis rezente Aue - morphologische Aue
Hydromorphologischer stad in povodí Labe - Hodnocení poměru recentní a morfológické údolní nivy / marše

Zentralmünd in map je omezeno na tok Labe a úvody zastávkovší přítoku Cemý Halštárov, Mulde, Sáša a Hévě (kategorie 1), a to až po první příjmuté příhradě, a na českém úseku na reprezentac. přímé úvody toku Labe. Základní poměry jsou také výjakem situaci u dosud neznámých větších a menších přítoků v povodí. Pro tyto vodní toky byly hodnoceny vzhledem k císlořadím datovým podkladem dosud vypracovány.

Datengenquellen Zdroje údajů
- K. Universität Prag / Univerzita Karlova, Praha
- Bundesanstalt für Gewässerkunde (BfG), Koblenz
- Behörde für Stadtentwicklung und Umwelt (BfU), Hamburg

K-A4-8: Hydromorphologischer stad in povodí Labe – hodnocení poměru recentní a morfológické údolní nivy / marše

Koncepce MKOL pro nakládání se sedimenty
Nickel in Schwebstoffen
Klassifikation der Jahresmittelwerte

Legende
- Grenze der FGE
- Stadt
- Staatsgrenzen
- BezugsMESSSTELLE
- Ni> 3 mg/kg
- Auswertung nicht möglich / nicht gemessen
- keine Daten / fehlende Daten

Nikl in plavenních
Klasifikace ročních průměrů

Legenda
- Hranice FGE
- Města
- Státní hranice
- Referenční Město
- Ni> 3 mg/kg
- Vykončení nesplněné / není možné vyhodnotit
- Nejde o daty / neznámy data

Datenquellen
- Fachinformationssystem (FIS) der FGG Elbe
- Informativer portal (FIS) der FGG Elbe
- Datenverarbeitung (CHMU)
- Datenbank der CHMU

Koordinierung

Realisierung

Nickelgehalt [mg/kg] in frischem schwebstoffführendem Sediment (Jahresmittel) [Schwebstoffkernbecken / + Zentrum]

<table>
<thead>
<tr>
<th>BezugsMESSSTELLE</th>
<th>Fluss - Region</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neumarkt</td>
<td>Elbe</td>
<td>39</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>40</td>
<td>37</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>Köln-Elbe</td>
<td>Elbe</td>
<td>41</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>46</td>
<td>39</td>
<td>46</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>Elbe</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>41</td>
<td>39</td>
<td>39</td>
</tr>
</tbody>
</table>

K-A4.9.6
y-HCH in Schwebstoffen
Klassifikation der Jahresmittelwerte

y-HCH v plavéních
Klasifikace ročních průměrů

Legende
- Grenze der FGE
- Städte
- Staatsgrenzen
- Bezugsmessstellen
- Referenzprofil
- y-HCH: < 0,5 µg/kg
- y-HCH: 0,5 - 1,5 µg/kg
- y-HCH: > 1,5 µg/kg
- Auswertung nicht möglich / není možno využít
- keine Daten / žádná data

Datenquellen Zdroje údajů
- Fachinformationsystem (FIS) der FFG Elbe
- Informationsportal (FIP) FFG Elbe
- Datenzusammenstellung CHMÚ
- Pflichtwerte der ÖNORM
- Tabelle / Tabulka T-A4-4

Koordination Koordinace
Realisierung Realizace

y-HCH-Gehalt [µg/kg] in frischem schwebstoffhaltigem Sediment (Jahresmittel) / Schwebstoffsmelzebecken / * Zentilfuge
Oberschicht y-HCH [µg/kg] in frischen sedimentar bedeckten Plävén [roční průměry] / sedimentar bedeckte

Benzigemisstelle / Reference point
Fluss / River

Römisch 2003 2004 2005 2006 2007 2008 2009 2010 2011

Nosewitz* Elbe 0 0 0 0 0 0 0 0 0 0
Niekolice* Elbe 0 0 0 0 0 0 0 0 0 0
Valy* Elbe 0 0 0 0 0 0 0 0 0 0
Lyse n. L. Elbe 0 0 0 0 0 0 0 0 0 0
Tüftle* Elbe 0 0 0 0 0 0 0 0 0 0
Oberfliak* Elbe 0 0 0 0 0 0 0 0 0 0
Děčín* Elbe 0 0 0 0 0 0 0 0 0 0
Děčin* Elbe 0 0 0 0 0 0 0 0 0 0
Děčín* Elbe 0 0 0 0 0 0 0 0 0 0
Schmalkal* Elbe 0 0 0 0 0 0 0 0 0 0
Schmalkal* Elbe 0 0 0 0 0 0 0 0 0 0
Zehren Elbe 0 0 0 0 0 0 0 0 0 0
Dennnitzsch Elbe 0 0 0 0 0 0 0 0 0 0
Gundorf* Elbe 0 0 0 0 0 0 0 0 0 0
Wittenberg* Elbe 0 0 0 0 0 0 0 0 0 0
Dessau* Elbe 0 0 0 0 0 0 0 0 0 0
Dessau* Elbe 0 0 0 0 0 0 0 0 0 0
Rosenburg* Saale 0 0 0 0 0 0 0 0 0 0
Magdeburg* Elbe 0 0 0 0 0 0 0 0 0 0
Harburg* Elbe 0 0 0 0 0 0 0 0 0 0
Bremen* Elbe 0 0 0 0 0 0 0 0 0 0
Schmalkal* Elbe 0 0 0 0 0 0 0 0 0 0
Seesemühl* Elbe 0 0 0 0 0 0 0 0 0 0

K-A4-9.11

184 Koncepce MKOL pro nakládání se sedimenty
PCB-138 in Schwebstoffen
Klassifikation der Jahresmittelwerte

PCB-138 in plappenináh
Klassifikace ročních průměrů

Legende
- Grenze der FGGE
- Mezoregion einzelner Einzugsgebiete
- Städte
- Staatsgrenzen
- Bezugsmaßnahmen referenzi profl
- PCB-138: < 1 µg/kg
- PCB-138: 1 - 20 µg/kg
- PCB-138: > 20 µg/kg
- Auswertung nicht möglich / nicht mögliche Verwendung
- keine Daten / žádná data

Koordination / Koordinace

Realisierung / Realizace

Datenquellen / Zdroje údajů
- Fachinformationssystem (FIS) der FGGE Elbe
- Informační portal (IFIS) FGGE Elbe
- Distanzmessungstruktur CHMU
- Příspěvky Českého úřadu
- Tabelle / Tabulka T4-A4-4

PCB-138-Gehalt [µg/kg] in frischen schwebstoffunterschiedlichen Sedimenten (Jahresmittel) [Schwebstoffunterschiedliche Zentrale] (Kläranlagentechnik / Sedimentanalytische Methoden / Methode der Sedimentanalyse)

K-A4-9.19
Hexachlorobenzene (HCB) in Schwebstoffen
Klassifikation der Jahresmittelwerte

Legende
- Grenze der FGE
- Städte
- Staatsgrenzen
- Bezugsmeßstellen
- Referenzprofil
- HCB: < 0.0004 µg/kg
- HCB: 0.0004 - 17 µg/kg
- HCB: > 17 µg/kg
- Auswertung nicht möglich / keine Daten / lückige Daten

Hexachlorobenzene (HCB) in plänen Flächen
Klassifikation der Jahresmittelwerte

Koordinierung
Koordinace

Realisierung
Realizace

Datenquellen
Zdroje údajů
- Fachinformationssystem (FIS) der FGG Elbe
- Informationsportal (IPS) FGG Elbe
- Datenzugang Datenbank CHMÚ
- Projekt der CHMÚ
- Tabelle T-A4-4

Hexachlorbenzene (µg/kg) in frischem schwebstoffreichen Sediment (Jahresmittel) [Schwebstoffananalytik / * Zenttfikation]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Negostie *</td>
<td>Elbe</td>
<td>2,5</td>
<td>3,4</td>
<td>3,7</td>
<td>37,0</td>
<td>631,9</td>
<td>3,9</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>Nělínice *</td>
<td>Elbe</td>
<td>2,9</td>
<td>4,4</td>
<td>2,9</td>
<td>5,0</td>
<td>99,7</td>
<td>15,4</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>Voly *</td>
<td>Elbe</td>
<td>5,5</td>
<td>5,1</td>
<td>9,2</td>
<td>10,3</td>
<td>7,0</td>
<td>9,7</td>
<td>4,9</td>
<td>5,0</td>
<td>9,4</td>
<td><3</td>
</tr>
<tr>
<td>Lynx n.L. *</td>
<td>Labia</td>
<td>3,3</td>
<td>7,9</td>
<td>5,6</td>
<td>5,0</td>
<td>9,7</td>
<td>4,9</td>
<td>5,0</td>
<td>9,4</td>
<td>4,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Tuchel *</td>
<td>Jerma</td>
<td>2,1</td>
<td>5,7</td>
<td>6,0</td>
<td>6,0</td>
<td>9,7</td>
<td>4,9</td>
<td>5,0</td>
<td>9,4</td>
<td>4,5</td>
<td>3,5</td>
</tr>
<tr>
<td>Obříhory</td>
<td>Elbe</td>
<td>2,4</td>
<td>3,5</td>
<td>7,0</td>
<td>26,0</td>
<td>67,7</td>
<td>4,7</td>
<td>4,5</td>
<td>3,5</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>Žlénč</td>
<td>Vltava</td>
<td>2,9</td>
<td>4,2</td>
<td>3,2</td>
<td>3,2</td>
<td>4,7</td>
<td>4,7</td>
<td>4,5</td>
<td>3,5</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>Terezín *</td>
<td>Ohře</td>
<td>0,8</td>
<td>2.3</td>
<td>5,0</td>
<td>67,7</td>
<td>4,7</td>
<td>4,5</td>
<td>3,5</td>
<td>2,4</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>Usti n.L. *</td>
<td>Elbe</td>
<td>196,5</td>
<td>186,0</td>
<td>186,0</td>
<td>186,0</td>
<td>186,0</td>
<td>186,0</td>
<td>186,0</td>
<td>186,0</td>
<td>186,0</td>
<td>186,0</td>
</tr>
<tr>
<td>Děčín</td>
<td>Elbe</td>
<td>388,4</td>
<td>482,3</td>
<td>577,3</td>
<td>581,0</td>
<td>591,9</td>
<td>585,0</td>
<td>666,0</td>
<td>666,0</td>
<td>666,0</td>
<td>666,0</td>
</tr>
<tr>
<td>Děčín *</td>
<td>Elbe</td>
<td>42,8</td>
<td>38,5</td>
<td>72,8</td>
<td>292,8</td>
<td>84,0</td>
<td>98,5</td>
<td>82,1</td>
<td>19,6</td>
<td>19,6</td>
<td>68,8</td>
</tr>
<tr>
<td>Sečnice</td>
<td>Elbe</td>
<td>270,0</td>
<td>340,0</td>
<td>240,0</td>
<td>110,0</td>
<td>170,0</td>
<td>170,0</td>
<td>150,0</td>
<td>78,0</td>
<td>147,0</td>
<td>147,0</td>
</tr>
</tbody>
</table>

K-A4.9.23

Koncepce MKOL pro nakládání se sedimenty